This paper presents a synthetic U-Pb and Hf isotopic study of zircons and a whole-rock geochemical study on diabase swarms that were emplaced into the Proterozoic formations in the Xuzhou-Huaibei area,the southeast ma...This paper presents a synthetic U-Pb and Hf isotopic study of zircons and a whole-rock geochemical study on diabase swarms that were emplaced into the Proterozoic formations in the Xuzhou-Huaibei area,the southeast margin of North China Craton.Zircons from the diabase dykes display weak oscillatory zoning in the cathodoluminescence(CL) images and show high Th/U ratios(0.91-6.90),both of which are typical of a magmatic origin.The SHRIMP and Q-ICP-MS U-Pb zircon dating results indicate that the diabase swarms were emplaced at ca.890 Ma.Hf isotopic analysis on these zircons gives Hf(t) values ranging from 2.26 to 14.74 and Hf model age t DM1 and t DM2 ranging from 843 to 1321 Ma and from 808 to 1779 Ma,respectively.Geochemically,the diabase swarms are characterized by a relative enrichment in LREE and LILE(Rb,Ba and La),a comparative enrichment in Cr and Ni,but a slight depletement in HFSE(Th,Nb,Ta,Zr and Hf).They are plotted in the within-plate tholeiite series on the tectonic discrimination diagrams.Taken together,these geochemical and isotopic data suggest that the primary magmas to form the diabase dykes in the Xuzhou-Huaibei area could have been derived from a transitional mantle in the Mesoproterozoic,and were most probably emplaced under a continental margin extensional setting at ca.890 Ma.The results of this study demonstrate that the Neoproterozoic(800-900 Ma)magmatism was not restricted to the Yangtze Block,but also occurred at the southeast margin of the North China Craton.展开更多
The Neoproterozoic Kangdian Rift Basin is a continental rift basin in the western Yangtze Continent.Determining its time of opening and subsequent filling pattern is an important aspect of understanding the formation ...The Neoproterozoic Kangdian Rift Basin is a continental rift basin in the western Yangtze Continent.Determining its time of opening and subsequent filling pattern is an important aspect of understanding the formation and evolution of the Yangtze Continent,South China.The Luliang Formation is the early filling in the eastern part of this rift basin,and its deposition age and filling sequence are significant for studies of the regional stratigraphic correlation,opening time,and filling pattern of this basin.Having been correlated to the upper part of the Mesoproterozoic Kunyang Group or to the Neoproterozoic Chengjiang Formation,the age and regional stratigraphic correlation of the Luliang Formation have long been uncertain.This is due to a lack of reliable absolute age constraints.To address this issue,the first zircon SHRIMP U-Pb geochronology has been established for this formation,yielding two high-precision isotopic ages of 818.6±9.2 and 805±14 Ma for the tuff layers at the bottoms of the lower and upper members of the Luliang Formation,respectively.Given the error factor,the bottom age of the lower member of the Luliang Formation can be interpreted as ca.820 Ma,corresponding to the bottom age of the lower part of the Banxi Group,which is the early filling of the Neoproterozoic Xianggui Rift Basin,a representative basin of the Neoproterozoic rift basins in the Yangtze Continent,South China.The bottom age of the upper member of the Luliang Formation can be interpreted as ca.800±5 Ma,corresponding to the bottom age of the Chengjiang Formation in the western part of the Neoproterozoic Kangdian Rift Basin and also corresponding to the bottom age of the upper part of the Banxi Group in the Neoproterozoic Xianggui Rift Basin.These ages indicate that the Neoproterozoic Kangdian Rift Basin shares the same opening time and filling sequences as those of the other Neoproterozoic rift basins in South China.Basin analysis shows that the Neoproterozoic Kangdian Rift Basin is a typical half-graben basin,with its main boundary fault in the west and basin center in the east.This basin consisted of mini unidirectional half-graben basins in its juvenile stage and simplified to become a large united half-graben basin in its mature stage,i.e.,a supradetachment basin.展开更多
The Chengjiang Formation is the earliest continental clastic deposit after the Jinning Orogeny in central Yunnan Province,and therefore its accurate depositional age is significant for understanding the formation and ...The Chengjiang Formation is the earliest continental clastic deposit after the Jinning Orogeny in central Yunnan Province,and therefore its accurate depositional age is significant for understanding the formation and evolution of the Neoproterozoic rift basins in southern China.However,hampered by accuracy of the dating technique,the existing age data for the Chengjiang Formation are not very reliable.A large number of magmatic zircons were obtained from the tuff interbed in the lower part of the Chengjiang Formation in Jinyang area and the bottom part of the Chengjiang Formation in Dongchuan area,central Yunnan Province,and high-precision SHRIMP U-Pb dating was carried out on these zircons.The results show that the weighted mean 206 Pb/238 U ages are 797.8±8.2 and 803.1±8.7 Ma respectively.In combination with related geological evidence,it has been demonstrated that the bottom boundary age of the Chengjiang Formation should be 800±5 Ma,whereas the top boundary age could be ca 725 Ma.By synthetically analyzing the latest age data for the relevant strata,it has been confirmed that the Chengjiang Formation should be correlated with the Suxiong Formation and the Kaijianqiao Formation in western Sichuan Province,the Liantuo Formation in the middle and lower Yangtze,the Hongchicun Formation and the Shangshu Formation in northern Zhejiang Province,the Puling Formation in southern Anhui Province,the Luokedong Formation and the Majianqiao Formation in northwestern Jiangxi Province,the Wuqiangxi Formation in northwestern Hunan Province,the Fanzhao Formation and the Qingshuijiang Formation in southeastern Guizhou Province,and the Sanmenjie Formation and the Gongdong Formation in northern Guangxi Province.Sedimentary cycle analysis shows that the sedimentary filling sequence of the Neoproterozoic rift basins in southern China can be divided into four cycles.Among them,Cycle II began at ca.800 Ma,accompanied by intensive tectonic-thermal events.The zircon U-Pb ages from the bottom of the Chengjiang Formation reported in this paper indicate that the Neoproterozoic Kangdian rift subbasin probably started to develop at ca.800 Ma and therefore missed Cycle I of the Neoproterozoic sedimentary filling sequence in southern China.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 40772037,90814003)
文摘This paper presents a synthetic U-Pb and Hf isotopic study of zircons and a whole-rock geochemical study on diabase swarms that were emplaced into the Proterozoic formations in the Xuzhou-Huaibei area,the southeast margin of North China Craton.Zircons from the diabase dykes display weak oscillatory zoning in the cathodoluminescence(CL) images and show high Th/U ratios(0.91-6.90),both of which are typical of a magmatic origin.The SHRIMP and Q-ICP-MS U-Pb zircon dating results indicate that the diabase swarms were emplaced at ca.890 Ma.Hf isotopic analysis on these zircons gives Hf(t) values ranging from 2.26 to 14.74 and Hf model age t DM1 and t DM2 ranging from 843 to 1321 Ma and from 808 to 1779 Ma,respectively.Geochemically,the diabase swarms are characterized by a relative enrichment in LREE and LILE(Rb,Ba and La),a comparative enrichment in Cr and Ni,but a slight depletement in HFSE(Th,Nb,Ta,Zr and Hf).They are plotted in the within-plate tholeiite series on the tectonic discrimination diagrams.Taken together,these geochemical and isotopic data suggest that the primary magmas to form the diabase dykes in the Xuzhou-Huaibei area could have been derived from a transitional mantle in the Mesoproterozoic,and were most probably emplaced under a continental margin extensional setting at ca.890 Ma.The results of this study demonstrate that the Neoproterozoic(800-900 Ma)magmatism was not restricted to the Yangtze Block,but also occurred at the southeast margin of the North China Craton.
基金supported by National Natural Science Foundation of China(Grant Nos.4103031541072088)China Geological Survey(Grant No.1212011121105)
文摘The Neoproterozoic Kangdian Rift Basin is a continental rift basin in the western Yangtze Continent.Determining its time of opening and subsequent filling pattern is an important aspect of understanding the formation and evolution of the Yangtze Continent,South China.The Luliang Formation is the early filling in the eastern part of this rift basin,and its deposition age and filling sequence are significant for studies of the regional stratigraphic correlation,opening time,and filling pattern of this basin.Having been correlated to the upper part of the Mesoproterozoic Kunyang Group or to the Neoproterozoic Chengjiang Formation,the age and regional stratigraphic correlation of the Luliang Formation have long been uncertain.This is due to a lack of reliable absolute age constraints.To address this issue,the first zircon SHRIMP U-Pb geochronology has been established for this formation,yielding two high-precision isotopic ages of 818.6±9.2 and 805±14 Ma for the tuff layers at the bottoms of the lower and upper members of the Luliang Formation,respectively.Given the error factor,the bottom age of the lower member of the Luliang Formation can be interpreted as ca.820 Ma,corresponding to the bottom age of the lower part of the Banxi Group,which is the early filling of the Neoproterozoic Xianggui Rift Basin,a representative basin of the Neoproterozoic rift basins in the Yangtze Continent,South China.The bottom age of the upper member of the Luliang Formation can be interpreted as ca.800±5 Ma,corresponding to the bottom age of the Chengjiang Formation in the western part of the Neoproterozoic Kangdian Rift Basin and also corresponding to the bottom age of the upper part of the Banxi Group in the Neoproterozoic Xianggui Rift Basin.These ages indicate that the Neoproterozoic Kangdian Rift Basin shares the same opening time and filling sequences as those of the other Neoproterozoic rift basins in South China.Basin analysis shows that the Neoproterozoic Kangdian Rift Basin is a typical half-graben basin,with its main boundary fault in the west and basin center in the east.This basin consisted of mini unidirectional half-graben basins in its juvenile stage and simplified to become a large united half-graben basin in its mature stage,i.e.,a supradetachment basin.
基金supported by National Natural Science Foundation of China (Grant Nos. 41030315,41072088)the China Geological Survey(Grant No. 1212011121105)
文摘The Chengjiang Formation is the earliest continental clastic deposit after the Jinning Orogeny in central Yunnan Province,and therefore its accurate depositional age is significant for understanding the formation and evolution of the Neoproterozoic rift basins in southern China.However,hampered by accuracy of the dating technique,the existing age data for the Chengjiang Formation are not very reliable.A large number of magmatic zircons were obtained from the tuff interbed in the lower part of the Chengjiang Formation in Jinyang area and the bottom part of the Chengjiang Formation in Dongchuan area,central Yunnan Province,and high-precision SHRIMP U-Pb dating was carried out on these zircons.The results show that the weighted mean 206 Pb/238 U ages are 797.8±8.2 and 803.1±8.7 Ma respectively.In combination with related geological evidence,it has been demonstrated that the bottom boundary age of the Chengjiang Formation should be 800±5 Ma,whereas the top boundary age could be ca 725 Ma.By synthetically analyzing the latest age data for the relevant strata,it has been confirmed that the Chengjiang Formation should be correlated with the Suxiong Formation and the Kaijianqiao Formation in western Sichuan Province,the Liantuo Formation in the middle and lower Yangtze,the Hongchicun Formation and the Shangshu Formation in northern Zhejiang Province,the Puling Formation in southern Anhui Province,the Luokedong Formation and the Majianqiao Formation in northwestern Jiangxi Province,the Wuqiangxi Formation in northwestern Hunan Province,the Fanzhao Formation and the Qingshuijiang Formation in southeastern Guizhou Province,and the Sanmenjie Formation and the Gongdong Formation in northern Guangxi Province.Sedimentary cycle analysis shows that the sedimentary filling sequence of the Neoproterozoic rift basins in southern China can be divided into four cycles.Among them,Cycle II began at ca.800 Ma,accompanied by intensive tectonic-thermal events.The zircon U-Pb ages from the bottom of the Chengjiang Formation reported in this paper indicate that the Neoproterozoic Kangdian rift subbasin probably started to develop at ca.800 Ma and therefore missed Cycle I of the Neoproterozoic sedimentary filling sequence in southern China.