The Natural Forest Protection(NFP) program is one of the Six Key Forestry Projects which were adopted by the Chinese Government since the 1980s to address important natural issues in China. It advanced to protecting a...The Natural Forest Protection(NFP) program is one of the Six Key Forestry Projects which were adopted by the Chinese Government since the 1980s to address important natural issues in China. It advanced to protecting and restoring the structures and functions of the natural forests through sustainable forest management. However, the role of forest carbon storage and tree carbon pool dynamics since the adoption of the NFP remains unknown. To address this knowledge gap, this study calculated forest carbon storage(tree, understory, forest floor and soil) in the forest region of northeastern(NE) China based on National Forest Inventory databases and field investigated databases. For tree biomass, this study utilized an improved method for biomass estimation that converts timber volume to total forest biomass; while for understory, forest floor and soil carbon storage, this study utilized forest type-specific mean carbon densities multiplied by their areas in the region. Results showed that the tree carbon pool under the NFP in NE China functioned as a carbon sink from 1998 to 2008, with an increase of 6.3 Tg C/yr, which was mainly sequestrated by natural forests(5.1 Tg C/yr). At the same time, plantations also acted as a carbon sink, reflecting an increase of 1.2 Tg C/yr. In 2008, total carbon storage in forests covered by the NFP in NE China was 4603.8 Tg C, of which 4393.3 Tg C was stored in natural forests and 210.5 Tg C in planted forests. Soil was the largest carbon storage component, contributing 69.5%–77.8% of total carbon storage; followed by tree and forest floor, accounting for 16.3%–23.0% and 5.0%–6.5% of total carbon storage, respectively. Understory carbon pool ranged from 1.9 to 42.7 Tg C, accounting for only 0.9% of total carbon storage.展开更多
The financial crisis in late 2008 arrested economic development in the construction sector in the Middle East, with the result that investors' confidence in the sector is severely depressed. Delays constitute one of ...The financial crisis in late 2008 arrested economic development in the construction sector in the Middle East, with the result that investors' confidence in the sector is severely depressed. Delays constitute one of the highest impediments to project success. In this respect, the traditional management is no longer sufficient for construction project success. The objective of this study is to conduct a literature review to identify additional effective measures for controlling the potential delays risks in construction projects in order to maximize the opportunities for success in those projects. Thirty-six scholarly articles published between 2000 and 2011 are reviewed to identify related MDRC (measures for delays risks control). This survey reveals that 60% of the studies are related to decision-making, performance, risk management variations and poor management knowledge of stakeholders and that 20% of these studies are undertaken in the Middle East. A further 25% of the studies are related to the lack of financial risk by stakeholders, and of these 14% are in the Middle East. A knowledge gap is identified in terms of project performance, stakeholder management and risk management, which are seen as significant measures of success in controlling project delay.展开更多
基金Under the auspices of Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA05060200)National Key Technology Research and Development Program of China(No.2012BAD22B04)Visiting Professorship for Senior International Scientists of Chinese Academy of Sciences(No.2012T1Z0006)
文摘The Natural Forest Protection(NFP) program is one of the Six Key Forestry Projects which were adopted by the Chinese Government since the 1980s to address important natural issues in China. It advanced to protecting and restoring the structures and functions of the natural forests through sustainable forest management. However, the role of forest carbon storage and tree carbon pool dynamics since the adoption of the NFP remains unknown. To address this knowledge gap, this study calculated forest carbon storage(tree, understory, forest floor and soil) in the forest region of northeastern(NE) China based on National Forest Inventory databases and field investigated databases. For tree biomass, this study utilized an improved method for biomass estimation that converts timber volume to total forest biomass; while for understory, forest floor and soil carbon storage, this study utilized forest type-specific mean carbon densities multiplied by their areas in the region. Results showed that the tree carbon pool under the NFP in NE China functioned as a carbon sink from 1998 to 2008, with an increase of 6.3 Tg C/yr, which was mainly sequestrated by natural forests(5.1 Tg C/yr). At the same time, plantations also acted as a carbon sink, reflecting an increase of 1.2 Tg C/yr. In 2008, total carbon storage in forests covered by the NFP in NE China was 4603.8 Tg C, of which 4393.3 Tg C was stored in natural forests and 210.5 Tg C in planted forests. Soil was the largest carbon storage component, contributing 69.5%–77.8% of total carbon storage; followed by tree and forest floor, accounting for 16.3%–23.0% and 5.0%–6.5% of total carbon storage, respectively. Understory carbon pool ranged from 1.9 to 42.7 Tg C, accounting for only 0.9% of total carbon storage.
文摘The financial crisis in late 2008 arrested economic development in the construction sector in the Middle East, with the result that investors' confidence in the sector is severely depressed. Delays constitute one of the highest impediments to project success. In this respect, the traditional management is no longer sufficient for construction project success. The objective of this study is to conduct a literature review to identify additional effective measures for controlling the potential delays risks in construction projects in order to maximize the opportunities for success in those projects. Thirty-six scholarly articles published between 2000 and 2011 are reviewed to identify related MDRC (measures for delays risks control). This survey reveals that 60% of the studies are related to decision-making, performance, risk management variations and poor management knowledge of stakeholders and that 20% of these studies are undertaken in the Middle East. A further 25% of the studies are related to the lack of financial risk by stakeholders, and of these 14% are in the Middle East. A knowledge gap is identified in terms of project performance, stakeholder management and risk management, which are seen as significant measures of success in controlling project delay.