NOx can cause severe environmental problems such as acid rain and photochemical smog,endangering human health and the living environment.Among them,NO pollution accounts for about 95%.NO can exist stably in the air fo...NOx can cause severe environmental problems such as acid rain and photochemical smog,endangering human health and the living environment.Among them,NO pollution accounts for about 95%.NO can exist stably in the air for a long time when the concentration is lower than the ppm level.Therefore,the conversion of low concentration of NO has attracted more and more attention.However,traditional physical or chemical methods are difficult to deal with low concentration of NO,having high requirements on equipment and being not cost‐effective.Semiconductor photocatalytic technology can convert low concentration of NO into non‐toxic products and reduce its harm.This work briefly surveys the commonly used materials,modification methods,and mechanisms for semiconductor photocatalytic conversion of low concentration of NO.In addition,the challenges and prospects of ppb level of NO treatment are also discussed,aiming to promote the development of semiconductor photocatalytic conversion of NO.展开更多
In this paper, a novel unmanned aerial vehicle(UAV)-enabled full duplex decode-and-forward(DF) technique is used in mobile relaying system. Compared with conventional static relaying, mobile relaying provides more deg...In this paper, a novel unmanned aerial vehicle(UAV)-enabled full duplex decode-and-forward(DF) technique is used in mobile relaying system. Compared with conventional static relaying, mobile relaying provides more degree of freedom for experiencing better channel conditions and further improving the system reliable performance. The source and relay transmit power as well as relay trajectory are jointly optimized for sum outage probability minimization in mobile relaying system. Due to the non-convex nature of the original problem, block coordinate decent optimization techniques are employed to decompose it into two sub-problems, which leads to an efficient iterative algorithm. Specifically, for the pre-determined relay trajectory, the optimal transmit power of source and relay are obtained by solving Karush-Kuhn-Tucker(KKT) conditions. For the given source/relay power allocation, the optimal UAV trajectory is obtained by solving dual problem. Based on the two steps, an iterative algorithm is proposed to jointly optimize source/relay power allocation and UAV trajectory alternately. Numerical results show the performance gain of our proposed scheme.展开更多
In this paper, based on the characteristics of polar codes, a new decode-and-forward strategy called generalized partial information relaying protocol is proposed for degraded multiple-relay networks with orthogonal r...In this paper, based on the characteristics of polar codes, a new decode-and-forward strategy called generalized partial information relaying protocol is proposed for degraded multiple-relay networks with orthogonal receiver components(MRNORCs). In such a protocol, with the help of partial information from previous nodes, each relay node tries to recover the received source message and re-encodes part of the decoded message for transmission to satisfy the decoding requirements for the following relay node or the destination node. In order to construct practical polar codes, the nested structures are developed based on this protocol and the information sets corresponding to the partial messages forwarded are also calculated. The proposed scheme is proved to be capable of achieving the theoretical capacity of the degraded MRN-ORCs while still retains the low-complexity feature of polar codes. We perform simulations to testify the practicability of the proposed scheme and compare polar codes by using successive-cancellation list decoder(SCLD) with traditional low-density parity-check(LDPC) codes. The results show that the obtained polar codes provide significant gain.展开更多
The preparation and catalytic activity of ferric oxide and its composite oxides supported gold catalysts for low-temperature CO oxidation were investigated detailedly, and characterized extensively by XRD, XPS, TPR, E...The preparation and catalytic activity of ferric oxide and its composite oxides supported gold catalysts for low-temperature CO oxidation were investigated detailedly, and characterized extensively by XRD, XPS, TPR, EC and XAFS techniques. It was found that containing highly dispersed Au of partially oxidized state, these nano-structured oxides supported Au/Fe2O3 and Au/NiFe2O4 catalysts had higher low-temperature activities. The possible catalytic active center is the gold of partially oxidized state (Auζ+).展开更多
Five windows such as white glass,Low-E glasses and intelligent glasses are employed for simulation of heating and cooling energy consumptions in five typical cities of China by the software TRNSYS 16.The result shows ...Five windows such as white glass,Low-E glasses and intelligent glasses are employed for simulation of heating and cooling energy consumptions in five typical cities of China by the software TRNSYS 16.The result shows that it is the most energy saving for the doubled glass when the VO 2 films are deposited on the inside surface of the outer pane.And it is 84.7% of energy saving compared with white glass.But the heating energy consumption is the highest.This is because the transition temperature of real intelligent glass is too high and the solar heat gain coefficient is very small when the glass is in the cold state.On this basis,the property of intelligent glass is improved from the theoretical level.The result shows that it can be the most effective way of energy saving when emissivity is 0,solar transmittance is 100% in the cold state;visible light transmittance is 100%,infrared and ultraviolet light transmission rate is 0 in the hot state.Because of the technology limitation,it is hard to lower the transition temperature to below 20℃.The transition temperature of the film should be lower and the emissivity higher as far as possible.展开更多
文摘NOx can cause severe environmental problems such as acid rain and photochemical smog,endangering human health and the living environment.Among them,NO pollution accounts for about 95%.NO can exist stably in the air for a long time when the concentration is lower than the ppm level.Therefore,the conversion of low concentration of NO has attracted more and more attention.However,traditional physical or chemical methods are difficult to deal with low concentration of NO,having high requirements on equipment and being not cost‐effective.Semiconductor photocatalytic technology can convert low concentration of NO into non‐toxic products and reduce its harm.This work briefly surveys the commonly used materials,modification methods,and mechanisms for semiconductor photocatalytic conversion of low concentration of NO.In addition,the challenges and prospects of ppb level of NO treatment are also discussed,aiming to promote the development of semiconductor photocatalytic conversion of NO.
基金supported by National High Technology Project of China 2015AA01A703Scientific and Technological Key Project of Henan Province under Grant 182102210449the National Natural Science Foundation of China under Grants 61372101 and 61671144
文摘In this paper, a novel unmanned aerial vehicle(UAV)-enabled full duplex decode-and-forward(DF) technique is used in mobile relaying system. Compared with conventional static relaying, mobile relaying provides more degree of freedom for experiencing better channel conditions and further improving the system reliable performance. The source and relay transmit power as well as relay trajectory are jointly optimized for sum outage probability minimization in mobile relaying system. Due to the non-convex nature of the original problem, block coordinate decent optimization techniques are employed to decompose it into two sub-problems, which leads to an efficient iterative algorithm. Specifically, for the pre-determined relay trajectory, the optimal transmit power of source and relay are obtained by solving Karush-Kuhn-Tucker(KKT) conditions. For the given source/relay power allocation, the optimal UAV trajectory is obtained by solving dual problem. Based on the two steps, an iterative algorithm is proposed to jointly optimize source/relay power allocation and UAV trajectory alternately. Numerical results show the performance gain of our proposed scheme.
基金supported by the National Natural Science Foundation of China (No.41574137, 41304117)
文摘In this paper, based on the characteristics of polar codes, a new decode-and-forward strategy called generalized partial information relaying protocol is proposed for degraded multiple-relay networks with orthogonal receiver components(MRNORCs). In such a protocol, with the help of partial information from previous nodes, each relay node tries to recover the received source message and re-encodes part of the decoded message for transmission to satisfy the decoding requirements for the following relay node or the destination node. In order to construct practical polar codes, the nested structures are developed based on this protocol and the information sets corresponding to the partial messages forwarded are also calculated. The proposed scheme is proved to be capable of achieving the theoretical capacity of the degraded MRN-ORCs while still retains the low-complexity feature of polar codes. We perform simulations to testify the practicability of the proposed scheme and compare polar codes by using successive-cancellation list decoder(SCLD) with traditional low-density parity-check(LDPC) codes. The results show that the obtained polar codes provide significant gain.
基金BEPC Synchrotron Radiation Laboratory of the Institute of High Energy Physics, Chinese Academy of Sciences.
文摘The preparation and catalytic activity of ferric oxide and its composite oxides supported gold catalysts for low-temperature CO oxidation were investigated detailedly, and characterized extensively by XRD, XPS, TPR, EC and XAFS techniques. It was found that containing highly dispersed Au of partially oxidized state, these nano-structured oxides supported Au/Fe2O3 and Au/NiFe2O4 catalysts had higher low-temperature activities. The possible catalytic active center is the gold of partially oxidized state (Auζ+).
文摘Five windows such as white glass,Low-E glasses and intelligent glasses are employed for simulation of heating and cooling energy consumptions in five typical cities of China by the software TRNSYS 16.The result shows that it is the most energy saving for the doubled glass when the VO 2 films are deposited on the inside surface of the outer pane.And it is 84.7% of energy saving compared with white glass.But the heating energy consumption is the highest.This is because the transition temperature of real intelligent glass is too high and the solar heat gain coefficient is very small when the glass is in the cold state.On this basis,the property of intelligent glass is improved from the theoretical level.The result shows that it can be the most effective way of energy saving when emissivity is 0,solar transmittance is 100% in the cold state;visible light transmittance is 100%,infrared and ultraviolet light transmission rate is 0 in the hot state.Because of the technology limitation,it is hard to lower the transition temperature to below 20℃.The transition temperature of the film should be lower and the emissivity higher as far as possible.