Bottom currents at about 1000m depth in and around a submarine valley on the continental slope of the northern South China Sea were studied by a 14-month long experiment from July 2013 to September 2014. The observati...Bottom currents at about 1000m depth in and around a submarine valley on the continental slope of the northern South China Sea were studied by a 14-month long experiment from July 2013 to September 2014. The observations reveal that bottom currents are strongly influenced by the topography, being along valley axis or isobaths. Power density spectrum analysis shows that all the currents have significant peaks at diurnal and semi-diurnal frequencies. Diurnal energy is dominant at the open slope site, which is consistent with many previous studies. However, at the site inside the valley the semi-diurnal energy dominates, although the distance between the two sites of observation is quite small (11 kin) compared to a typical horizontal first-mode internal tide wavelength (200 km). We found this phenomenon is caused by the focusing of internal waves of certain frequencies in the valley. The inertial peak is found only at the open slope site in the first deployment but missing at the inside valley site and the rest of the de- ployments. Monthly averaged residual currents reveal that the near-bottom currents on the slope flow southwestward throughout the year except in August and September, 2013, from which we speculate that this is a result of the interaction between a mesoscale eddy and the canyon/sag topography. Currents inside the valley within about 10mab basically flow along slope and in the layers above the 10mab the currents are northwestward, that is, from the deep ocean to the shelf. The monthly mean current vectors manifest an Ek- man layer-like vertical structure at both sites, which rotate counter-clockwise looking from above.展开更多
Petrographic analysis combined with various techniques, such as scanning electron microscopy and X-ray diffraction, was used to assess the timing of growth and original mineral cements, the controls on reservoir and r...Petrographic analysis combined with various techniques, such as scanning electron microscopy and X-ray diffraction, was used to assess the timing of growth and original mineral cements, the controls on reservoir and reservoir quality of the fourth member sandstones of Shahejie formation (Es4). The Es4 sandstones are mostly arkose and lithic arkose, rarely feldspathic litharenite, with an average mass fraction of quartz 51.6%, feldspar 33.8% and rock fragments 14.6% (Q51.6F33.8R14.6). They have an average framework composition (mass fraction) of quartz 57.10%, K-feldspar 5.76%, sodium-calcium feldspar 13.00%, calcite 5.77%, dolomite 5.63%, siderite 0.95%, pyrite 0.30%, anhydrite 0.04%, and clay mineral 11.46%. The diagenentic minerals typically include kaolinite, illite-smectite (I/S), illite, chlorite, authigenetic quartz and feldspar, and carbonate and pyrite. Es4 sandstone has undergone stages A and B of eodiagenesis, and now, it is experiencing stage A of mesodiagenesis. Reservoir quality is predominantly controlled by the mechanical compaction, for example, 45.65% of the original porosity loss is related to compaction. The original porosity loss related with cementation is only 26.00%. The reservoir quality is improved as a result of dissolution of feldspar, rock fragment and so forth. The porosity evolved from dissolution varies from 3% to 4%.展开更多
基金funded by China National Offshore Oil Corporation (CNOOC)sponsored by the National Natural Science Foundation of China (Nos.41406031 and 41376038)NSFC-Shandong Joint Fund for Marine Science Research Centers (No.U1406404)
文摘Bottom currents at about 1000m depth in and around a submarine valley on the continental slope of the northern South China Sea were studied by a 14-month long experiment from July 2013 to September 2014. The observations reveal that bottom currents are strongly influenced by the topography, being along valley axis or isobaths. Power density spectrum analysis shows that all the currents have significant peaks at diurnal and semi-diurnal frequencies. Diurnal energy is dominant at the open slope site, which is consistent with many previous studies. However, at the site inside the valley the semi-diurnal energy dominates, although the distance between the two sites of observation is quite small (11 kin) compared to a typical horizontal first-mode internal tide wavelength (200 km). We found this phenomenon is caused by the focusing of internal waves of certain frequencies in the valley. The inertial peak is found only at the open slope site in the first deployment but missing at the inside valley site and the rest of the de- ployments. Monthly averaged residual currents reveal that the near-bottom currents on the slope flow southwestward throughout the year except in August and September, 2013, from which we speculate that this is a result of the interaction between a mesoscale eddy and the canyon/sag topography. Currents inside the valley within about 10mab basically flow along slope and in the layers above the 10mab the currents are northwestward, that is, from the deep ocean to the shelf. The monthly mean current vectors manifest an Ek- man layer-like vertical structure at both sites, which rotate counter-clockwise looking from above.
基金Project(2006AA09Z336) supported by the National High-Tech Research and Development Program of China
文摘Petrographic analysis combined with various techniques, such as scanning electron microscopy and X-ray diffraction, was used to assess the timing of growth and original mineral cements, the controls on reservoir and reservoir quality of the fourth member sandstones of Shahejie formation (Es4). The Es4 sandstones are mostly arkose and lithic arkose, rarely feldspathic litharenite, with an average mass fraction of quartz 51.6%, feldspar 33.8% and rock fragments 14.6% (Q51.6F33.8R14.6). They have an average framework composition (mass fraction) of quartz 57.10%, K-feldspar 5.76%, sodium-calcium feldspar 13.00%, calcite 5.77%, dolomite 5.63%, siderite 0.95%, pyrite 0.30%, anhydrite 0.04%, and clay mineral 11.46%. The diagenentic minerals typically include kaolinite, illite-smectite (I/S), illite, chlorite, authigenetic quartz and feldspar, and carbonate and pyrite. Es4 sandstone has undergone stages A and B of eodiagenesis, and now, it is experiencing stage A of mesodiagenesis. Reservoir quality is predominantly controlled by the mechanical compaction, for example, 45.65% of the original porosity loss is related to compaction. The original porosity loss related with cementation is only 26.00%. The reservoir quality is improved as a result of dissolution of feldspar, rock fragment and so forth. The porosity evolved from dissolution varies from 3% to 4%.