The performance of micro flood irrigation (MFI) under different inflow rates was evaluated on 90 m closed ended furrows in the South African Tukulu soil. A single irrigation was used to characterise the surface and ...The performance of micro flood irrigation (MFI) under different inflow rates was evaluated on 90 m closed ended furrows in the South African Tukulu soil. A single irrigation was used to characterise the surface and subsurface soil water distribution from the 20, 40, 80 and 160 L/min inflow rates treatments. Neutron access tubes were installed to a depth of 1 m at every 10 m distance interval starting at 5 m from the furrow inlet. Soil water content measurements were taken using the WaterMan neutron water meter. The HYDRUS-2D software was also used to provide insight on irrigated furrows soil water content and subsurface water distribution. The 20 L/min produced a stream flow that could advance up to the 60 m furrow distance. The stream flow from the rest of the inflow rates were able to reach the furrow end with the 180 L/min recording the fastest advance time of 23 min. The 20 L/min and 40 L/min had recession period of less than 7 min while the 80 L/rain and 160 L/min lasted more than an hour. Distribution uniformity (DU) at longer furrow distances was the highest from the 80 L/min and 160 L/min with the 20 L/min and 40 L/min recorded similar performances at shorter distances. The 40 L/rain was one of the smaller inflow rates that recorded the highest DU of 0.96 for the generated average infiltrated depth of the 30 m long furrow and therefore should be adopted for furrow distances of less than 60 m on the Tukulu soil.展开更多
文摘The performance of micro flood irrigation (MFI) under different inflow rates was evaluated on 90 m closed ended furrows in the South African Tukulu soil. A single irrigation was used to characterise the surface and subsurface soil water distribution from the 20, 40, 80 and 160 L/min inflow rates treatments. Neutron access tubes were installed to a depth of 1 m at every 10 m distance interval starting at 5 m from the furrow inlet. Soil water content measurements were taken using the WaterMan neutron water meter. The HYDRUS-2D software was also used to provide insight on irrigated furrows soil water content and subsurface water distribution. The 20 L/min produced a stream flow that could advance up to the 60 m furrow distance. The stream flow from the rest of the inflow rates were able to reach the furrow end with the 180 L/min recording the fastest advance time of 23 min. The 20 L/min and 40 L/min had recession period of less than 7 min while the 80 L/rain and 160 L/min lasted more than an hour. Distribution uniformity (DU) at longer furrow distances was the highest from the 80 L/min and 160 L/min with the 20 L/min and 40 L/min recorded similar performances at shorter distances. The 40 L/rain was one of the smaller inflow rates that recorded the highest DU of 0.96 for the generated average infiltrated depth of the 30 m long furrow and therefore should be adopted for furrow distances of less than 60 m on the Tukulu soil.