Satellite observations provide large amount of information of clouds and precipitation and play an important role in the forecast of heavy rainfall.However,we have not fully taken advantage of satellite observations i...Satellite observations provide large amount of information of clouds and precipitation and play an important role in the forecast of heavy rainfall.However,we have not fully taken advantage of satellite observations in the data assimilation of numerical weather predictions,especially those in infrared channels. It is common to only assimilate radiances under clear-sky conditions since it is extremely difficult to simulate infrared transmittance in cloudy sky.On the basis of the Global and Regional Assimilation and Prediction Enhanced System 3-dimensional variance(GRAPES-3DVar),cloud liquid water content, ice-water content and cloud cover are employed as governing variables in the assimilation system.This scheme can improve the simulation of infrared transmittance by a fast radiative transfer model for TOVS (RTTOV)and adjust the atmospheric and cloud parameters based on infrared radiance observations.In this paper,we investigate a heavy rainfall over Guangdong province on May 26,2007,which is right after the onset of a South China Sea monsoon.In this case,channels of the Moderate Resolution Imaging Spectroradiometer(MODIS)for observing water vapor(Channel 27)and cloud top altitude(Channel 36)are selected for the assimilation.The process of heavy rainfall is simulated by the Weather Research and Forecasting(WRF)model.Our results show that the assimilated MODIS data can improve the distribution of water vapor and temperature in the first guess field and indirectly adjust the upper-level wind field.The tendency of adjustment agrees well with the satellite observations.The assimilation scheme has positive impacts on the short-range forecasting of rainstorm.展开更多
Coarse-resolution satellite albedo products are important for climate change and energy balance research because of their capability to characterize the spatiotemporal patterns of land surface parameters at both the r...Coarse-resolution satellite albedo products are important for climate change and energy balance research because of their capability to characterize the spatiotemporal patterns of land surface parameters at both the regional and global scales. The accuracy of coarse-resolution products is usually assessed via comparison with in situ measurements. The key issue in the comparison of remote sensing observations with in situ measurements is scaling and uncertainty. This paper presents a strategy for validating 1-km-resolution remote sensing albedo products using field measurements and high-resolution remote sensing observations. Field measurements were collected to calibrate the high-resolution(30 m) albedo products derived from HJ-1a/b images. Then, the calibrated high-resolution albedo maps were resampled(i.e., upscaled) to assess the accuracy of the coarse-resolution albedo products. The samples of field measurements and high-resolution pixels are based on an uncertainty analysis. Two types of coarse-resolution albedo datasets, from global land surface satellite(GLASS) and moderate-resolution imaging spectroradiometer(MODIS), are validated over the middle reaches of the Heihe River in China. The results indicate that the upscaled HJ(Huan Jing means environment in Chinese and this refers to a satellite constellation designed for environment and disaster monitoring by China) albedo, which was calibrated using field measurements, can provide accurate reference values for validating coarse-resolution satellite albedo products. However, the uncertainties in the upscaled HJ albedo should be estimated, and pixels with large uncertainties should be excluded from the validation process.展开更多
CHAMP satellite data and ground-based magnetic observations are used and combined to map the lithospheric magnetic field over China by means of the revised spherical cap harmonic analysis(R-SHCA)modeling technique.The...CHAMP satellite data and ground-based magnetic observations are used and combined to map the lithospheric magnetic field over China by means of the revised spherical cap harmonic analysis(R-SHCA)modeling technique.The magnetic field is described to a spatial resolution of 150 km at the mean Earth’s radius,which represents a good compromise between the resolutions afforded by surface and satellite data.We compare the magnetic anomalies modeled at the regional scale with composite regions containing large-scale of tectonic structures.These regions,including the Tarim Basin and the Tibetan Plateau,are correlated with regional magnetic anomalies at satellite altitude but contain a significant number of small-scale and complex magnetic structures at the mean Earth’s radius.These magnetic anomalies are globally consistent with the known geological features in China but also offer a way to delineate the contours of the geological blocks and to discuss the connection between magnetic anomalies and the heat flow distribution in this region.展开更多
基金Natural Foundamental Research and Development Project"973"Program(2009CB421500)Natural Science Foundation of China(7035011)
文摘Satellite observations provide large amount of information of clouds and precipitation and play an important role in the forecast of heavy rainfall.However,we have not fully taken advantage of satellite observations in the data assimilation of numerical weather predictions,especially those in infrared channels. It is common to only assimilate radiances under clear-sky conditions since it is extremely difficult to simulate infrared transmittance in cloudy sky.On the basis of the Global and Regional Assimilation and Prediction Enhanced System 3-dimensional variance(GRAPES-3DVar),cloud liquid water content, ice-water content and cloud cover are employed as governing variables in the assimilation system.This scheme can improve the simulation of infrared transmittance by a fast radiative transfer model for TOVS (RTTOV)and adjust the atmospheric and cloud parameters based on infrared radiance observations.In this paper,we investigate a heavy rainfall over Guangdong province on May 26,2007,which is right after the onset of a South China Sea monsoon.In this case,channels of the Moderate Resolution Imaging Spectroradiometer(MODIS)for observing water vapor(Channel 27)and cloud top altitude(Channel 36)are selected for the assimilation.The process of heavy rainfall is simulated by the Weather Research and Forecasting(WRF)model.Our results show that the assimilated MODIS data can improve the distribution of water vapor and temperature in the first guess field and indirectly adjust the upper-level wind field.The tendency of adjustment agrees well with the satellite observations.The assimilation scheme has positive impacts on the short-range forecasting of rainstorm.
基金sponsored by the National Basic Research Program of China(Grant No.2013CB733401)the National High Technology Research and Development Program of China(Grant No.2012AA12A300)the National Natural Science Foundation of China(Grant Nos.41273168,41331171)
文摘Coarse-resolution satellite albedo products are important for climate change and energy balance research because of their capability to characterize the spatiotemporal patterns of land surface parameters at both the regional and global scales. The accuracy of coarse-resolution products is usually assessed via comparison with in situ measurements. The key issue in the comparison of remote sensing observations with in situ measurements is scaling and uncertainty. This paper presents a strategy for validating 1-km-resolution remote sensing albedo products using field measurements and high-resolution remote sensing observations. Field measurements were collected to calibrate the high-resolution(30 m) albedo products derived from HJ-1a/b images. Then, the calibrated high-resolution albedo maps were resampled(i.e., upscaled) to assess the accuracy of the coarse-resolution albedo products. The samples of field measurements and high-resolution pixels are based on an uncertainty analysis. Two types of coarse-resolution albedo datasets, from global land surface satellite(GLASS) and moderate-resolution imaging spectroradiometer(MODIS), are validated over the middle reaches of the Heihe River in China. The results indicate that the upscaled HJ(Huan Jing means environment in Chinese and this refers to a satellite constellation designed for environment and disaster monitoring by China) albedo, which was calibrated using field measurements, can provide accurate reference values for validating coarse-resolution satellite albedo products. However, the uncertainties in the upscaled HJ albedo should be estimated, and pixels with large uncertainties should be excluded from the validation process.
基金supported by National Natural Science Foundation of China(Grant Nos.4117412240890163&41031066)OPWSRP(Grant No.201005017)
文摘CHAMP satellite data and ground-based magnetic observations are used and combined to map the lithospheric magnetic field over China by means of the revised spherical cap harmonic analysis(R-SHCA)modeling technique.The magnetic field is described to a spatial resolution of 150 km at the mean Earth’s radius,which represents a good compromise between the resolutions afforded by surface and satellite data.We compare the magnetic anomalies modeled at the regional scale with composite regions containing large-scale of tectonic structures.These regions,including the Tarim Basin and the Tibetan Plateau,are correlated with regional magnetic anomalies at satellite altitude but contain a significant number of small-scale and complex magnetic structures at the mean Earth’s radius.These magnetic anomalies are globally consistent with the known geological features in China but also offer a way to delineate the contours of the geological blocks and to discuss the connection between magnetic anomalies and the heat flow distribution in this region.