期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
实验性芤脉“脉变”数字化和量化的机制研究 被引量:1
1
作者 孟繁超 牛婷立 +6 位作者 程祯祯 高璐佼 洪洁薇 林荣辉 杨峥 杨学智 牛欣 《世界科学技术-中医药现代化》 CSCD 北大核心 2019年第12期2873-2880,共8页
目的实现实验性芤脉"脉变"前后的中医四诊合参信息数字化和量化,创建人体无创的失血、伤津模型。方法对符合纳入标准随机选取的31例受试者,在安静端坐状态下,测量血压并使用四诊合参辅助诊疗仪采集中医四诊信息,然后嘱受试者... 目的实现实验性芤脉"脉变"前后的中医四诊合参信息数字化和量化,创建人体无创的失血、伤津模型。方法对符合纳入标准随机选取的31例受试者,在安静端坐状态下,测量血压并使用四诊合参辅助诊疗仪采集中医四诊信息,然后嘱受试者做Valsalva动作,同时采集四诊信息。通过分析比较受试者数字化和量化的中医四诊合参诊断信息,评价模拟失血、伤津模型。结果与自然状态相比,31例受试者,做Valsalva动作时脉力、弦紧度、血压降低(P<0.01),脉率、变异系数(coefficient of variation,CV)、脉搏波传导速度(pulse wave velocity,PWV)升高(P<0.01),Valsalva动作后舌质颜色加深(P<0.01)。结论本研究利用四诊合参辅助诊疗仪将Valsalva动作前和Valsalva动作时的中医四诊合参信息数字化、量化,对比建立了人体无创中医失血、伤津模型。 展开更多
关键词 实验性芤脉 脉变 Valsalva实验 中医四诊合参 气血津液
下载PDF
Clinical Intelligent Diagnosis Path Based on the Chief Complaint 被引量:3
2
作者 ZHOU Xiao-Qing TONG Tian-Hao +1 位作者 ZENG Yi-Di ZHONG Lu 《Digital Chinese Medicine》 2020年第1期44-49,共6页
Goals of traditional Chinese medicine(TCM)include precision,accuracy,and recognition by clinical practice.Establishment of a diagnosis and treatment system that closely conforms to the principle-method-recipe-medicine... Goals of traditional Chinese medicine(TCM)include precision,accuracy,and recognition by clinical practice.Establishment of a diagnosis and treatment system that closely conforms to the principle-method-recipe-medicines system and derivation of an accurate diagnosis and treatment plan should be considerations of TCM.Artificial intelligence research based on computer technology is one of the effective ways to solve this problem.In the research of intelligent diagnosis path,reflecting the characteristics of the overall view and dialectical treatment of TCM such as"Combination of four diagnostic methods""overall examination""combination of disease and syndrome"and"treatment individualized to patient,season and locality"are key for successful research of artificial intelligence in TCM diagnosis or recognition by clinical practice. 展开更多
关键词 Chief complaint Intelligent diagnosis TCM diagnosis Correlation analysis Combination of four diagnostic methods Symptom pair Symptom group
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部