The purpose of this study was to assess the effect of long-term cultivation and water erosion on the soil organic carbon (OC) in particle-size fractions. The study site is located at Nihegou Watershed in the Souther...The purpose of this study was to assess the effect of long-term cultivation and water erosion on the soil organic carbon (OC) in particle-size fractions. The study site is located at Nihegou Watershed in the Southern Loess Plateau, China. The soil at this site is loess with loose and silty structure, and contains macropores. The results showed that the OC concentrations in sediments and in the particle-size fractions of sediments were higher than those in soils and in the particle-size fractions of soils. The OC concentration was highest in the clay particles and was lowest in the sand particles. Clay particles possessed higher OC enrichment ability than silt and sand particles. The proportions of OC in the silt fractions of soil and sediment were the highest (mean value of 53.87% and 58.48%, respectively), and the total proportion of OC in the clay and silt fractions accounted for 96% and 98% of the total OC in the soil and sediment, respectively. The loss of OC was highest in silt particles, with an average value of 0.16 Mg ha^-1 y^-1, and was lowest in the sand (0.003 Mg ha^-1 y^-l). This result suggests that the fine particle-size fraction in the removed sediment may be an important indicator to assess soil OC losses.展开更多
Sediment samples obtained from the South Mid-Atlantic Ridge were studies by gas chromatography-mass spectrometer (GC-MS) for the abundance and distributions of total fatty acids (TFAs). Approximately 34 fatty acid...Sediment samples obtained from the South Mid-Atlantic Ridge were studies by gas chromatography-mass spectrometer (GC-MS) for the abundance and distributions of total fatty acids (TFAs). Approximately 34 fatty acids were identified, with the chain-lengths ranging from C12 to C30. The total concentrations of TFAs (∑TFA) ranged from 7.15 to 30.09 μgg-l dry sediment, and ∑TFA was weakly correlated with bitumen content (R2=0.69). The ∑TFA of samples around hydrothermal areas were significantly higher than that of samples away from hydrothermal areas, indicating intense primary production and large biomass in the hydro- thermal areas, and suggesting a close relationship between hydrothermal activity and ∑TFA of samples. The characteristics of the TFA composition in the present study are rich in monounsaturated fatty acids and lacking in polyunsaturated fatty acids, and the ra- tios between the concentrations of monounsaturated fatty acids and ∑TFAs in samples close to the hydrothermal areas, are about 0.8, but for samples far from the hydrothermal areas, they are only about 0.5. Several fatty acids (e.g., a/iC15:0 and C16:1co7), which are signature biomarkers for sulfur-metabolizing bacteria, show the same distribution trend as ∑TFA of samples, further highlighting the close relationship between fatty acid content and hydrothermal activity and/or hydrothermal communities. The metabolic activities of hydrothermal communities, especially those of microorganisms, are likely the main source of fatty acids in samples.展开更多
基金supported by the grants from President Foundation of Northwest A & F University, China
文摘The purpose of this study was to assess the effect of long-term cultivation and water erosion on the soil organic carbon (OC) in particle-size fractions. The study site is located at Nihegou Watershed in the Southern Loess Plateau, China. The soil at this site is loess with loose and silty structure, and contains macropores. The results showed that the OC concentrations in sediments and in the particle-size fractions of sediments were higher than those in soils and in the particle-size fractions of soils. The OC concentration was highest in the clay particles and was lowest in the sand particles. Clay particles possessed higher OC enrichment ability than silt and sand particles. The proportions of OC in the silt fractions of soil and sediment were the highest (mean value of 53.87% and 58.48%, respectively), and the total proportion of OC in the clay and silt fractions accounted for 96% and 98% of the total OC in the soil and sediment, respectively. The loss of OC was highest in silt particles, with an average value of 0.16 Mg ha^-1 y^-1, and was lowest in the sand (0.003 Mg ha^-1 y^-l). This result suggests that the fine particle-size fraction in the removed sediment may be an important indicator to assess soil OC losses.
基金supported by the National Key Basic Research Program of China (Grant No. 2013CB429700)National Special Fund for the 12th Five Year Plan of COMRA (Grant Nos. DY125-12-R-02, DY125-12-R-05, DY125- 11-R-05)+2 种基金National Natural Science Foundation of China (Grant Nos. 41325021, 40830849, 40976027)Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA11030302)the Shandong Province Natural Science Foundation of China for Distinguished Young Scholars (Grant No. JQ200913)
文摘Sediment samples obtained from the South Mid-Atlantic Ridge were studies by gas chromatography-mass spectrometer (GC-MS) for the abundance and distributions of total fatty acids (TFAs). Approximately 34 fatty acids were identified, with the chain-lengths ranging from C12 to C30. The total concentrations of TFAs (∑TFA) ranged from 7.15 to 30.09 μgg-l dry sediment, and ∑TFA was weakly correlated with bitumen content (R2=0.69). The ∑TFA of samples around hydrothermal areas were significantly higher than that of samples away from hydrothermal areas, indicating intense primary production and large biomass in the hydro- thermal areas, and suggesting a close relationship between hydrothermal activity and ∑TFA of samples. The characteristics of the TFA composition in the present study are rich in monounsaturated fatty acids and lacking in polyunsaturated fatty acids, and the ra- tios between the concentrations of monounsaturated fatty acids and ∑TFAs in samples close to the hydrothermal areas, are about 0.8, but for samples far from the hydrothermal areas, they are only about 0.5. Several fatty acids (e.g., a/iC15:0 and C16:1co7), which are signature biomarkers for sulfur-metabolizing bacteria, show the same distribution trend as ∑TFA of samples, further highlighting the close relationship between fatty acid content and hydrothermal activity and/or hydrothermal communities. The metabolic activities of hydrothermal communities, especially those of microorganisms, are likely the main source of fatty acids in samples.