Scientific development is an invaluable asset to a country.Policies and development modes should be carried out based on scientific findings not only in industry,but also in transportation infrastructure construction....Scientific development is an invaluable asset to a country.Policies and development modes should be carried out based on scientific findings not only in industry,but also in transportation infrastructure construction.Building an integrated transportation system,which is in line with the national requirements of China and supports sustainable socio-economic development,is a key strategic issue related to building a moderately prosperous society and achieving realistic goals of a medium-level developed country.Based on a systematic review of the advances in China's transportation infrastructure over the last 60 years,this paper explores the main drivers of transportation development,including national policy,transportation structure,investment efficiency,and technological innovation.Analysis shows that China's comprehensive transportation infrastructure construction since 1949 can be divided into five stages initiated by these drivers,which correspond to four transition modes:policy transition,structural transition,efficiency transition,and technology transition.The transition path of China's transportation development shows that the dominant factors have changed,and the interval for each transition has shortened.With the implementation of the '12th Five-Year Plan',China's transportation infrastructure construction is showing some new characteristics and facing a new development transition.Finally,this paper analyzes the trends in transportation development in China and concludes that technological innovation will be the main driving force to increase the transportation supply and service area in the future.展开更多
In traditional urban geography, city contact research is a classic study element in city research. In general, researchers use the traditional gravity model to characterize the contacts that exist between two cities. ...In traditional urban geography, city contact research is a classic study element in city research. In general, researchers use the traditional gravity model to characterize the contacts that exist between two cities. The traditional gravity model assumes ideal conditions, but these preconditions and their results often do not exist in realistic conditions. Thus, we used a modified gravity model to characterize the city contacts within a specific region. This model considers factors such as intercity complementarities, government intervention, and the diversity of the transportation infrastructure which is characterized as the transportation distance instead of the traditional Euclidean distance. We applied this model to an empirical study of city contact in the Zhujiang(Pearl) River Delta(PRD) of China. The regression results indicated that the modified gravity model could measure city contact more accurately and comprehensively than the traditional gravity model, i.e., it yielded a higher adjusted R2 value(0.379) than the traditional gravity model result(0.259). Our study also suggests that, in addition to urban-regional and metropolitan development, the complementarities of the basic functions of cities at the administrative and market levels, as well as the corporeal and immaterial levels, play very significant roles in the characterization of city contact. Given the complexity of city contact, it will be necessary to consider more relevant influential factors in the modified gravity model to characterize the features of city contact in the future.展开更多
As the transport sector is a major source of greenhouse gas emissions, the effect of urbanization on transport CO2 emissions in developing cities has become a key issue under global climate change. Examining the case ...As the transport sector is a major source of greenhouse gas emissions, the effect of urbanization on transport CO2 emissions in developing cities has become a key issue under global climate change. Examining the case of Xi'an, this paper aims to explore the spatial distribution of commuting CO2 emissions and influencing factors in the new, urban industry zones and city centers considering Xi'an's transition from a monocentric to a polycentric city in the process of urbanization. Based on household survey data from 1501 respondents, there are obvious differences in commuting CO2 emissions between new industry zones and city centers: City centers feature lower household emissions of 2.86 kg CO2 per week, whereas new industry zones generally have higher household emissions of 3.20 kg CO2 per week. Contrary to previous research results, not all new industry zones have high levels of CO2 emissions; with the rapid development of various types of industries, even a minimum level of household emissions of 2.53 kg CO2 per week is possible. The uneven distribution of commuting CO2 emissions is not uniformly affected by spatial parameters such as job-housing balance, residential density, employment density, and land use diversity. Optimum combination of the spatial parameters and travel pattern along with corresponding transport infrastructure construction may be an appropriate path to reduction and control of emissions from commuting.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.41171107,41001082)Programme of Bingwei Excellent Young Scientists of Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences
文摘Scientific development is an invaluable asset to a country.Policies and development modes should be carried out based on scientific findings not only in industry,but also in transportation infrastructure construction.Building an integrated transportation system,which is in line with the national requirements of China and supports sustainable socio-economic development,is a key strategic issue related to building a moderately prosperous society and achieving realistic goals of a medium-level developed country.Based on a systematic review of the advances in China's transportation infrastructure over the last 60 years,this paper explores the main drivers of transportation development,including national policy,transportation structure,investment efficiency,and technological innovation.Analysis shows that China's comprehensive transportation infrastructure construction since 1949 can be divided into five stages initiated by these drivers,which correspond to four transition modes:policy transition,structural transition,efficiency transition,and technology transition.The transition path of China's transportation development shows that the dominant factors have changed,and the interval for each transition has shortened.With the implementation of the '12th Five-Year Plan',China's transportation infrastructure construction is showing some new characteristics and facing a new development transition.Finally,this paper analyzes the trends in transportation development in China and concludes that technological innovation will be the main driving force to increase the transportation supply and service area in the future.
基金Under the auspices of National Natural Science Foundation of China(No.41271177)Guangdong Natural Science Foundation(No.S2012010008902)
文摘In traditional urban geography, city contact research is a classic study element in city research. In general, researchers use the traditional gravity model to characterize the contacts that exist between two cities. The traditional gravity model assumes ideal conditions, but these preconditions and their results often do not exist in realistic conditions. Thus, we used a modified gravity model to characterize the city contacts within a specific region. This model considers factors such as intercity complementarities, government intervention, and the diversity of the transportation infrastructure which is characterized as the transportation distance instead of the traditional Euclidean distance. We applied this model to an empirical study of city contact in the Zhujiang(Pearl) River Delta(PRD) of China. The regression results indicated that the modified gravity model could measure city contact more accurately and comprehensively than the traditional gravity model, i.e., it yielded a higher adjusted R2 value(0.379) than the traditional gravity model result(0.259). Our study also suggests that, in addition to urban-regional and metropolitan development, the complementarities of the basic functions of cities at the administrative and market levels, as well as the corporeal and immaterial levels, play very significant roles in the characterization of city contact. Given the complexity of city contact, it will be necessary to consider more relevant influential factors in the modified gravity model to characterize the features of city contact in the future.
基金funded by National Natural Science Foundation of China(51178055)Asia Pacific Network for Global Change Research(1094801)
文摘As the transport sector is a major source of greenhouse gas emissions, the effect of urbanization on transport CO2 emissions in developing cities has become a key issue under global climate change. Examining the case of Xi'an, this paper aims to explore the spatial distribution of commuting CO2 emissions and influencing factors in the new, urban industry zones and city centers considering Xi'an's transition from a monocentric to a polycentric city in the process of urbanization. Based on household survey data from 1501 respondents, there are obvious differences in commuting CO2 emissions between new industry zones and city centers: City centers feature lower household emissions of 2.86 kg CO2 per week, whereas new industry zones generally have higher household emissions of 3.20 kg CO2 per week. Contrary to previous research results, not all new industry zones have high levels of CO2 emissions; with the rapid development of various types of industries, even a minimum level of household emissions of 2.53 kg CO2 per week is possible. The uneven distribution of commuting CO2 emissions is not uniformly affected by spatial parameters such as job-housing balance, residential density, employment density, and land use diversity. Optimum combination of the spatial parameters and travel pattern along with corresponding transport infrastructure construction may be an appropriate path to reduction and control of emissions from commuting.