针对地球观测领域规模最大的政府间国际组织“地球观测组织(Group on Earth Observations)”提出的“全球综合地球观测系统”这一概念,梳理了其实现和建设的现状,分析了其具有供给导向、元数据质量不高、无法直接支撑决策和行动等局限...针对地球观测领域规模最大的政府间国际组织“地球观测组织(Group on Earth Observations)”提出的“全球综合地球观测系统”这一概念,梳理了其实现和建设的现状,分析了其具有供给导向、元数据质量不高、无法直接支撑决策和行动等局限性。结合我国参加地球观测组织的计划和成果,详细阐述了面向全球服务的中国综合地球观测系统的内涵,并基于全球综合地球观测系统的优势与不足,提出了中国综合地球观测系统平台的系统架构,另外就优质数据集研制、信息专题服务以及数据应急响应3个案例阐述了中国综合地球观测系统平台的实践及成效。展开更多
It has been observed that low temperature, rainfall, snowfall, frost have never occurred over the past 50 years in the southern China, and weather in this area is very complex, so the monitoring equipments are few. Op...It has been observed that low temperature, rainfall, snowfall, frost have never occurred over the past 50 years in the southern China, and weather in this area is very complex, so the monitoring equipments are few. Optical and thermal infrared remote sensing is influenced much by clouds, so the passive microwave Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) data are the best choice to monitor and analyze the development of disaster. In order to improve estimation accuracy, the dynamic learn- ing neural network was used to retrieve snow depth. The difference of brightness temperatures of TB18.7v and TB36.sv, TBI8.7H and TB36.sH, TB23,sv and TB89v, TBz3.8H and TB89H are made as four main input nodes and the snow depth is the only one output node of neural network. The mean and the standard deviation of retrieval errors are about 4.8 cm and 6.7 cm relative to the test data of ground measurements. The application analysis indicated that the neural network can be utilized to monitor the change of snow intensity distribution through passive microwave data in the complex weather of the southern China.展开更多
With such significant advantages as all-day observation, penetrability and all-weather coverage, passive mi-crowave remote sensing technique has been widely applied in the research of global environmental change. As t...With such significant advantages as all-day observation, penetrability and all-weather coverage, passive mi-crowave remote sensing technique has been widely applied in the research of global environmental change. As the sat-ellite-based passive microwave remote sensor, the Advanced Microwave Scanning Radiometer-Earth Observing Sys-tem (AMSR-E) loaded on NASA's (National Aeronautics and Space Administration of USA) Aqua satellite has been popularly used in the field of microwave observation. The Microwave Radiation Imager (MWRI) loaded on the Chi-nese FengYun-3A (FY-3A) satellite is an AMSR-E-like conical scanning microwave sensor, but there are few reports about MWRI data. This paper firstly proposed an optimal spatial position matching algorithm from rough to exact for the position matching between AMSR-E and MWRI data, then taking Northeast China as an example, comparatively analyzed the microwave brightness temperature data derived from AMSR-E and MWRI. The results show that when the antenna footprints of the two sensors are filled with either full water, or full land, or mixed land and water with ap-proximate proportion, the errors of brightness temperature between AMSR-E and MWRI are usually in the range from -10 K to +10 K. In general, the residual values of brightness temperature between the two microwave sensors with the same spatial resolution are in the range of ±3 K. Because the spatial resolution of AMSR-E is three times as high as that of MWRI, the results indicate that the quality of MWRI data is better. The research can provide useful information for the MWRI data application and microwave unmixing method in the future.展开更多
A validation study of land surface temperature (LST) obtained from the Ka band (37 GHz) vertically polarized brightness temperature over northern China is presented.The remotely sensed LST derived jointly by the Vrije...A validation study of land surface temperature (LST) obtained from the Ka band (37 GHz) vertically polarized brightness temperature over northern China is presented.The remotely sensed LST derived jointly by the Vrije Universiteit Amsterdam and the NASA Goddard Space Flight Center (VUA-NASA) from the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) were compared to the daily in-situ top soil temperature/infrared surface temperature observations from eleven/three Enhanced Coordinated Observation stations in arid and semi-arid regions of northern China.The VUA-NASA LST from the descending path exhibited a stronger correspondence to the in-situ infrared surface temperature than soil temperature observations,whereas correlations (R 2) of the latter ranged from 0.41 to 0.86.Meanwhile,the ascending overpass LST was generally warmer than the in-situ soil temperature observations at all stations,and the correlation (R 2) was between 0.07 and 0.72.Furthermore,the correlation of the descending path was generally greater than that of the ascending path at the same station.The descending path VUA-NASA LST was sensitive to precipitation and presented good agreement with ground temperature dynamics.The analyses demonstrated that the descending overpass LST was reliable to reflect reasonable patterns of temperature dynamics for land surface temperature in the region.展开更多
Remote sensing, which came into being at the first International Symposium on Remote Sensing of Environment (ISRSE) 50 years ago, has enabled people to obtain objecive and realistic spatial and temporal information th...Remote sensing, which came into being at the first International Symposium on Remote Sensing of Environment (ISRSE) 50 years ago, has enabled people to obtain objecive and realistic spatial and temporal information through the application of Earth observation technologies and analyze and understand the macro-level changes of the Earth system from a spaial view. The technology of Earth observaion from space has incomparable advantages in the study of the Earth. This aricle introduces the 50-year development of Earth observaion in the world and the 30-year development of Earth observaion in China and reflects on the building of China's Earth observaion system.展开更多
Using earth satellite observation means, remote sensing information distilled technique and regional research production, we have roundly analyzed and made an integrated evaluation about the Lop Nur nuclear test field...Using earth satellite observation means, remote sensing information distilled technique and regional research production, we have roundly analyzed and made an integrated evaluation about the Lop Nur nuclear test field in western China. This product reveals the rarely-known nuke explosion effect and response events of geology conditions. It also offers us legible and practical first-hand materials about human extreme effects, important engineering environment and intimidating influence process. By excavating and appraising the materials gradually on the natural environment factors changing in the test field through macroscopic elimination and typical filtration, it can supply basic scientific data for security of national nuclear usage, appraising the nuclear environment synthetically and developing nuclear strategy expediently.展开更多
The tropospheric delay is one of the main error sources for radio navigation technologies and other ground-or space-based earth observation systems. In this paper, the spatial and temporal variations of the zenith tro...The tropospheric delay is one of the main error sources for radio navigation technologies and other ground-or space-based earth observation systems. In this paper, the spatial and temporal variations of the zenith tropospheric delay (ZTD), especially their dependence on altitude over China region, are analyzed using ECMWF (European Centre for Medium-Range Weather Forecast) pressure-level atmospheric data in 2004 and the ZTD series in 1999-2007 measured at 28 GPS stations from the Crustal Movement Observation Network of China (CMONC). A new tropospheric delay correction model (SHAO) is derived and a regional realization of this model for China region named SHAO-C is established. In SHAO-C model, ZTD is modeled directly by a cosine function together with an initial value and an amplitude at a reference height in each grid, and the variation of ZTD along altitude is fitted with a second-order polynomial. The coefficients of SHAO-C are generated using the meteorology data in China area and given at two degree latitude and longitude interval, featuring regional characteristics in order to facilitate a wide range of navigation and other surveying applications in and around China. Compared with the EGNOS (European Geostationary Navigation Overlay Service) model, which has been used globally and recommended by the European Union Wide Area Augmentation System, the ZTD prediction (in form of spatial and temporal projection) accuracy of the SHAO-C model is significantly improved over China region, especially at stations of higher altitudes. The reasons for the improvement are: (1) the reference altitude of SHAO-C parameters are given at the average height of each grid, and (2) more detailed description of complicated terrain variations in China is incorporated in the model. Therefore, the accumulated error at higher altitude can be reduced considerably. In contrast, the ZTD has to be calculated from the mean sea level with EGNOS and other models. Compared with the direct estimation of ZTD from the 28 GPS stations, the accuracy of the derived ZTD using the SHAO-C model can be improved by 60.5% averagely compared with the EGNOS model. The overall bias and rms are 2.0 and 4.5 cm, respectively, which should be sufficient to satisfy the requirements of most GNSS navigation or positioning applications in terms of the tropospheric delay correction.展开更多
文摘针对地球观测领域规模最大的政府间国际组织“地球观测组织(Group on Earth Observations)”提出的“全球综合地球观测系统”这一概念,梳理了其实现和建设的现状,分析了其具有供给导向、元数据质量不高、无法直接支撑决策和行动等局限性。结合我国参加地球观测组织的计划和成果,详细阐述了面向全球服务的中国综合地球观测系统的内涵,并基于全球综合地球观测系统的优势与不足,提出了中国综合地球观测系统平台的系统架构,另外就优质数据集研制、信息专题服务以及数据应急响应3个案例阐述了中国综合地球观测系统平台的实践及成效。
基金Under the auspices of National Program on Key Basic Research Project(No.2010CB951503)National Key Technology R&D Program of China(No.2013BAC03B00)National High Technology Research and Development Program of China(No.2012AA120905)
文摘It has been observed that low temperature, rainfall, snowfall, frost have never occurred over the past 50 years in the southern China, and weather in this area is very complex, so the monitoring equipments are few. Optical and thermal infrared remote sensing is influenced much by clouds, so the passive microwave Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) data are the best choice to monitor and analyze the development of disaster. In order to improve estimation accuracy, the dynamic learn- ing neural network was used to retrieve snow depth. The difference of brightness temperatures of TB18.7v and TB36.sv, TBI8.7H and TB36.sH, TB23,sv and TB89v, TBz3.8H and TB89H are made as four main input nodes and the snow depth is the only one output node of neural network. The mean and the standard deviation of retrieval errors are about 4.8 cm and 6.7 cm relative to the test data of ground measurements. The application analysis indicated that the neural network can be utilized to monitor the change of snow intensity distribution through passive microwave data in the complex weather of the southern China.
基金Under the auspices of National Natural Science Foundation of China (No. 40971189)Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-340)China Postdoctoral Science Foundation (No. 20100471276)
文摘With such significant advantages as all-day observation, penetrability and all-weather coverage, passive mi-crowave remote sensing technique has been widely applied in the research of global environmental change. As the sat-ellite-based passive microwave remote sensor, the Advanced Microwave Scanning Radiometer-Earth Observing Sys-tem (AMSR-E) loaded on NASA's (National Aeronautics and Space Administration of USA) Aqua satellite has been popularly used in the field of microwave observation. The Microwave Radiation Imager (MWRI) loaded on the Chi-nese FengYun-3A (FY-3A) satellite is an AMSR-E-like conical scanning microwave sensor, but there are few reports about MWRI data. This paper firstly proposed an optimal spatial position matching algorithm from rough to exact for the position matching between AMSR-E and MWRI data, then taking Northeast China as an example, comparatively analyzed the microwave brightness temperature data derived from AMSR-E and MWRI. The results show that when the antenna footprints of the two sensors are filled with either full water, or full land, or mixed land and water with ap-proximate proportion, the errors of brightness temperature between AMSR-E and MWRI are usually in the range from -10 K to +10 K. In general, the residual values of brightness temperature between the two microwave sensors with the same spatial resolution are in the range of ±3 K. Because the spatial resolution of AMSR-E is three times as high as that of MWRI, the results indicate that the quality of MWRI data is better. The research can provide useful information for the MWRI data application and microwave unmixing method in the future.
基金supported by the National Basic Research Program of China (Grant No.2009CB723904)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDA05090201)
文摘A validation study of land surface temperature (LST) obtained from the Ka band (37 GHz) vertically polarized brightness temperature over northern China is presented.The remotely sensed LST derived jointly by the Vrije Universiteit Amsterdam and the NASA Goddard Space Flight Center (VUA-NASA) from the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) were compared to the daily in-situ top soil temperature/infrared surface temperature observations from eleven/three Enhanced Coordinated Observation stations in arid and semi-arid regions of northern China.The VUA-NASA LST from the descending path exhibited a stronger correspondence to the in-situ infrared surface temperature than soil temperature observations,whereas correlations (R 2) of the latter ranged from 0.41 to 0.86.Meanwhile,the ascending overpass LST was generally warmer than the in-situ soil temperature observations at all stations,and the correlation (R 2) was between 0.07 and 0.72.Furthermore,the correlation of the descending path was generally greater than that of the ascending path at the same station.The descending path VUA-NASA LST was sensitive to precipitation and presented good agreement with ground temperature dynamics.The analyses demonstrated that the descending overpass LST was reliable to reflect reasonable patterns of temperature dynamics for land surface temperature in the region.
文摘Remote sensing, which came into being at the first International Symposium on Remote Sensing of Environment (ISRSE) 50 years ago, has enabled people to obtain objecive and realistic spatial and temporal information through the application of Earth observation technologies and analyze and understand the macro-level changes of the Earth system from a spaial view. The technology of Earth observaion from space has incomparable advantages in the study of the Earth. This aricle introduces the 50-year development of Earth observaion in the world and the 30-year development of Earth observaion in China and reflects on the building of China's Earth observaion system.
基金The State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chi-nese Academy of Sciences, the open fund item (No. SKLLQG0701) to subsidizedthe constructprogram of the key discipline in Hunan Province, China, the fund item (No. D2007001) the State Key Labo-ratories of Continental Dynamics,Northwest University, the open fund item (No. DL2006001) to combine subsi-dized.
文摘Using earth satellite observation means, remote sensing information distilled technique and regional research production, we have roundly analyzed and made an integrated evaluation about the Lop Nur nuclear test field in western China. This product reveals the rarely-known nuke explosion effect and response events of geology conditions. It also offers us legible and practical first-hand materials about human extreme effects, important engineering environment and intimidating influence process. By excavating and appraising the materials gradually on the natural environment factors changing in the test field through macroscopic elimination and typical filtration, it can supply basic scientific data for security of national nuclear usage, appraising the nuclear environment synthetically and developing nuclear strategy expediently.
基金supported by the National Natural Science Foundation of China (Grant No.10603011 and 41174023)the National High Technology Research and Development Program of China (Grant No.2009AA12Z307)+2 种基金Science and Technology Commission of Shanghai Municipality (Grant Nos.05QMX1462 and 08ZR1422400)the Youth Foundation of Knowledge Innovation Project of the Chinese Academy of SciencesShanghai Astronomical Observatory (Grant No.5120090304)
文摘The tropospheric delay is one of the main error sources for radio navigation technologies and other ground-or space-based earth observation systems. In this paper, the spatial and temporal variations of the zenith tropospheric delay (ZTD), especially their dependence on altitude over China region, are analyzed using ECMWF (European Centre for Medium-Range Weather Forecast) pressure-level atmospheric data in 2004 and the ZTD series in 1999-2007 measured at 28 GPS stations from the Crustal Movement Observation Network of China (CMONC). A new tropospheric delay correction model (SHAO) is derived and a regional realization of this model for China region named SHAO-C is established. In SHAO-C model, ZTD is modeled directly by a cosine function together with an initial value and an amplitude at a reference height in each grid, and the variation of ZTD along altitude is fitted with a second-order polynomial. The coefficients of SHAO-C are generated using the meteorology data in China area and given at two degree latitude and longitude interval, featuring regional characteristics in order to facilitate a wide range of navigation and other surveying applications in and around China. Compared with the EGNOS (European Geostationary Navigation Overlay Service) model, which has been used globally and recommended by the European Union Wide Area Augmentation System, the ZTD prediction (in form of spatial and temporal projection) accuracy of the SHAO-C model is significantly improved over China region, especially at stations of higher altitudes. The reasons for the improvement are: (1) the reference altitude of SHAO-C parameters are given at the average height of each grid, and (2) more detailed description of complicated terrain variations in China is incorporated in the model. Therefore, the accumulated error at higher altitude can be reduced considerably. In contrast, the ZTD has to be calculated from the mean sea level with EGNOS and other models. Compared with the direct estimation of ZTD from the 28 GPS stations, the accuracy of the derived ZTD using the SHAO-C model can be improved by 60.5% averagely compared with the EGNOS model. The overall bias and rms are 2.0 and 4.5 cm, respectively, which should be sufficient to satisfy the requirements of most GNSS navigation or positioning applications in terms of the tropospheric delay correction.