The relationship between the upper ocean thermal structure and the genesis locations of tropical cyclones (TCs) in the South China Sea (SCS) is investigated by using the Joint Typhoon Warning Center (JTWC) best-track ...The relationship between the upper ocean thermal structure and the genesis locations of tropical cyclones (TCs) in the South China Sea (SCS) is investigated by using the Joint Typhoon Warning Center (JTWC) best-track archives and high resolution (1/4 degree) temperature analyses of the world's oceans in this paper. In the monthly mean genesis positions of TCs from 1945 to 2005 in the SCS, the mean sea surface temperature (SST) was 28.8℃ and the mean depth of 26℃ water was 53.1 m. From the monthly distribution maps of genesis positions of TCs, SST and the depth of 26℃ water in the SCS, we discovered that there existed regions with SST exceeding 26℃ and 26℃ water depth exceeding 50 m where no tropical cyclones formed from 1945 to 2005 in the SCS, which suggests that there were other factors unfavorable for TC formation in these regions.展开更多
Tropical cyclones(TCs)in the South China Sea(SCS)cause serious disasters and loss every year to the coastal and inland areas of southern China.The types of TCs are usually difficult to forecast,and studies on the unde...Tropical cyclones(TCs)in the South China Sea(SCS)cause serious disasters and loss every year to the coastal and inland areas of southern China.The types of TCs are usually difficult to forecast,and studies on the understanding of the TCs affecting the SCS are lacking.In this study,the authors use the TC data during 1965–2017 from two best-track datasets to analyse the climatic characteristics in terms of the frequency,the track activity,and the influencing indexes of the TCs affecting the SCS and investigate the possible causes.The results show that,during 1965–2017,there were 535 TCs affecting the SCS,mainly occurring from June to November of each year,with the annual average frequency exhibiting a significant downward trend.Meanwhile,the frequency of the track activity in most areas of the SCS also demonstrate a remarkable decreasing trend but an increase in the Gulf of Tonkin and the Taiwan Strait.The large-scale environmental anomalous westerlies and the decrease of humidity in the mid-and low-level over the northern part of the SCS are likely the main causes for the decrease in frequency and the track activity.In addition,the analysis using the cyclone activity index shows that the influence of the before mentioned TCs in southern China gradually decreases,while the influence of TCs in the SCS show a decreasing trend during past decades.展开更多
China is one of the countries most severely suffering from tropical cyclones. The exact and timely forecasting and warning is of significant importance in fighting against tropical cyclones and mitigating their impact...China is one of the countries most severely suffering from tropical cyclones. The exact and timely forecasting and warning is of significant importance in fighting against tropical cyclones and mitigating their impacts on China. The numerical weather prediction (NWP) system for tropical cyclone rainfall and strong wind is going to play a more and more important role. There is also a need for timely and user friendly modem warning services in order to provide the governments and relevant authorities at all levels and general public with typhoon forecasts and information about the associated disasters and response strategy services.展开更多
Daily climate data at 110 stations during 1961-2010 were selected to examine the changing characteristics of climate factors and extreme climate events in South China. The annual mean surface air temperature has incre...Daily climate data at 110 stations during 1961-2010 were selected to examine the changing characteristics of climate factors and extreme climate events in South China. The annual mean surface air temperature has increased significantly by 0.16℃ per decade, most notably in the Pearl River Delta and in winter. The increase rate of the annual extreme minimum temperature (0.48℃ per decade) is over twice that of the annual extreme maximum temperature (0.20℃ per decade), and the increase of the mean temperature is mainly the result of the increase of the extreme minimum temperature. The increase rate of high-temperature days (1.1 d per decade) is close to the decrease rate of low-temperature days (-1.3 d per decade). The rainfall has not shown any significant trend, but the number of rainy days has decreased and the rain intensity has increased. The regional mean sunshine duration has a significant decreasing trend of -40.9 h per decade, and the number of hazy days has a significant increasing trend of 6.3 d per decade. The decrease of sunshine duration is mainly caused by the increase of total cloud, not by the increase of hazy days in South China. Both the regional mean pan evaporation and mean wind speed have significant decreasing trends of -65.9 mm per decade and -0.11 m s-1 per decade, respectively. The decrease of both sunshine duration and mean wind speed plays an important role in the decrease of pan evaporation. The number of landing tropical cyclones has an insignificant decreasing trend of -0.6 per decade, but their intensities show a weak increasing trend. The formation location of tropical cyclones landing in South China has converged towards 10-19°N, and the landing position has shown a northward trend. The date of the first landfall tropical cyclone postpones 1.8 d per decade, and the date of the last landfall advances 3.6 d per decade, resulting in reduction of the typhoon season by 5.4 d per decade.展开更多
This study examines the modulation of tropical cyclogenesis over the South China Sea (SCS) by the E1 Nifio-Southem Oscillation (ENSO) Modoki during the boreal summer. Results reveal that there were more tropical c...This study examines the modulation of tropical cyclogenesis over the South China Sea (SCS) by the E1 Nifio-Southem Oscillation (ENSO) Modoki during the boreal summer. Results reveal that there were more tropical cyclones (TCs) formed over the SCS during central Pacific warming years and less TC frequency during central Pacific cooling years. How different environmental factors (including low-level relative vorticity, mid-level relative humidity, vertical wind shear, and potential intensity) contribute to this influence is investigated, using a genesis potential (GP) index developed by Emanuel and Nolan. Composite anomalies of the GP index are produced for central Pacific warming and cooling years separately, which could account for the changes of TC frequency over the SCS in different ENSO Modoki phases. The degree of contribution by each factor is determined quantitatively by producing composites of modified indices in which only one of the contributing factors varies, with the others set to climatology. The results suggest that the vertical wind shear and low-level relative vorticity, which are associated with the ENSO Modold-induced anomalous circulations in Matsuno-Gill patterns, make the largest contributions to the ENSO Modoki modulation of tropical cyclogenesis over the SCS as implied by the GP index. These results highlight the important roles of dynamic factors in the modulation of TC fre-quency over the SCS by the ENSO Modold during the boreal summer.展开更多
Decadal variations of extreme tropical cyclones (TCs) influencing China were. investigated based on the tracks, landfall information, precipitation and wind data during 1949-2009. The extreme landfall date events ar...Decadal variations of extreme tropical cyclones (TCs) influencing China were. investigated based on the tracks, landfall information, precipitation and wind data during 1949-2009. The extreme landfall date events are less in the 1970s and 2000s. The number of extreme events of maximum wind speed and minimum pressure near TC's center reached the highest in the 2000s. The extreme rain duration events had the highest frequence in the 1970s, and the extreme strong wind duration events had the maximum frequence in the 1980s. The number of stations whereat the extreme maximum daily precipitation or process precipitation is observed, is the largest in the 1960s, and the number of stations whereat daily maximum wind speed events axe observed, is the largest in the 1980s.展开更多
Based on the tropical cyclone data from the Central Meteorological Observatory of China, Japan Meteorological Agency, Joint Typhoon Warning Center and European Centre for Medium-Range Weather Forecasts (ECMWF) durin...Based on the tropical cyclone data from the Central Meteorological Observatory of China, Japan Meteorological Agency, Joint Typhoon Warning Center and European Centre for Medium-Range Weather Forecasts (ECMWF) during the period of 2004 to 2009, three consensus methods are used in tropical cyclone (TC) track forecasts. Operational consensus results show that the objective forecasts of ECMWF help to improve consensus skill by 2%, 3%-5% and 3%-5%, decrease track bias by 2.5 kin, 6-9 km and 10-12 km for the 24 h, 48 h and 72 h forecasts respectively over the years of 2007 to 2009. Analysis also indicates that consensus forecasts hold positive skills relative to each member. The multivariate regression composite is a method that shows relatively low skill, while the methods of arithmetic averaging and composite (in which the weighting coefficient is the reciprocal square of mean error of members) have almost comparable skills among members. Consensus forecast for a lead time of 96 h has negative skill relative to the ECMWF objective forecast.展开更多
According to the national standard(2006)on tropical cyclone(TC)intensity,TCs are categorized into six intensity types,namely,tropical depression(TD),tropical storm(TS),severe tropical storm(STS), typhoon(TY),severe ty...According to the national standard(2006)on tropical cyclone(TC)intensity,TCs are categorized into six intensity types,namely,tropical depression(TD),tropical storm(TS),severe tropical storm(STS), typhoon(TY),severe typhoon(STY),and super severe typhoon(SSTY).Fifty-eight years(1949–2006)of the datasets from the Yearbook of Typhoons and Yearbook of Tropical Cyclones were used to study the variation characteristics of TCs making landfalls in China's Mainland,Hainan and Taiwan islands.The main results are as follows.First,interannual or interdecadal variations in the number of landfalling TCs at different intensities exist.As far as long-term trends are concerned,the TD and TS frequencies show a significant linearly decreasing trend while those of STY show a significant linearly increasing trend.Second, a significant period of 6–8 years exist in the variations of annual landfalling TD,TS,and STS frequencies while quasi-16-year periods are found in the annual TY frequency.Third,TD and TS are generated mostly over the South China Sea,while TY,STY,and SSTY mostly over the waters southeast of the Bashi Channel and the ocean to the east of the Philippines.Fourth,as far as interdecadal trends are concerned,the frequencies of landfalling TD and TS generated over the South China Sea show significant linearly decreasing trends.However,TY and STY show significant linearly increasing trends.展开更多
This study examines the seasonal variations of tropical cyclogenesis over the South China Sea (SCS) using a genesis potential (GP) index developed by Emanuel and Nolan. How different environmental factors (including l...This study examines the seasonal variations of tropical cyclogenesis over the South China Sea (SCS) using a genesis potential (GP) index developed by Emanuel and Nolan. How different environmental factors (including low-level vorticity, mid-level relative humidity, vertical wind shear, and potential intensity) contribute to these variations is investigated. Composite anomalies of the GP index are produced for the summer and winter monsoons separately. These composites replicate the observed seasonal variations of the observed frequency and location of tropical cyclogenesis over the SCS. The degree of contribution by each factor in different regions is determined quantitatively by producing composites of modified indices in which only one of the contributing factors varies, with the others set to climatology. Over the northern SCS, potential intensity makes the largest contributions to the seasonal variations in tropical cyclogenesis. Over the southern SCS, the low-level relative vorticity plays the primary role in the seasonal modulation of tropical cyclone (TC) genesis frequency, and the vertical wind shear plays the secondary role. Thermodynamic factors play more important roles for the seasonal variations in tropical cyclogenesis over the northern SCS, while dynamic factors are more important in the seasonal modulation of TC genesis frequency over the southern SCS.展开更多
Analysis of the climatic characteristics of the tropical cyclones that affect China yields several interesting features. The frequency of these tropical cyclones tended to decrease from 1951 to 2005, with the lowest f...Analysis of the climatic characteristics of the tropical cyclones that affect China yields several interesting features. The frequency of these tropical cyclones tended to decrease from 1951 to 2005, with the lowest frequency in the past ten years. The decrease in the frequency of super typhoons is particularly significant. The main season of tropical cyclone activities is from May to November, with an active period from July to September. There are three obvious sources of these tropical cyclones and they vary with seasons and decades. Their movement has also changed with seasons. On average, these tropical cyclones affect China for 5.6 months annually and the period of influence decreases in the past decades. An analysis of daily data indicates that the days of typhoon influence are shorter in winter and spring and longer in summer. The frequency of tropical cyclones is the largest over southeastern China, decreasing northwestward. Taiwan is the region that is affected by tropical cyclones most frequently. The average annual precipitation associated with tropical cyclones has also decreased gradually northwestward from southeastern China.展开更多
Tropical cyclone (TC) genesis in the South China Sea (SCS) during 1979-2008 underwent a decadal variation around 1993. A total of 55 TCs formed in the SCS from May to September during 1994- 2008, about twice that ...Tropical cyclone (TC) genesis in the South China Sea (SCS) during 1979-2008 underwent a decadal variation around 1993. A total of 55 TCs formed in the SCS from May to September during 1994- 2008, about twice that during 1979-1993 (27). During the TC peak season (July-September, JAS), there were 43 TCs fi'om 1994-2008, but only 17 during 1979-1993. For July in particular, 13 TCs formed from 1994-2008, but there were none during 1979-1993. The change in TC number is associated with changes of key environmental conditions in atmosphere and ocean. Compared to 1979-1993, the subtropical high was significantly weaker and was displaced more eastward during 1994-2008. In the former period, a stronger subtropical high induced downward flow, inhibiting TC formation. In the latter period, vertical wind shear and outgoing longwave radiation all weakened. Mid-level (850-500 hPa) humidity, and relative vorticity were higher. Sea surface temperature and upper layer heat content were also higher in the area. All these factors favor TC genesis during the latter period. The decadal change of TC genesis led to more landfalling TCs in Southern China during the period 1994-2008, which contributed to an abrupt increase in regional rainfall.展开更多
In this paper, the observational data from Marine and Meteorological Observation Platform (MMOP) at Bohe, Maoming and buoys located in Shanwei and Maoming are used to study the characteristics of air-sea temperature...In this paper, the observational data from Marine and Meteorological Observation Platform (MMOP) at Bohe, Maoming and buoys located in Shanwei and Maoming are used to study the characteristics of air-sea temperature and specific humidity difference and the relationship between wind and wave with the tropical cyclones over the South China Sea (SCS). The heat and momentum fluxes from eddy covariance measurement (EC) are compared with these fluxes calculated by the COARE 3.0 algorithm for Typhoon Koppu. The results show that at the developing and weakening stages of Koppu, both these differences between the sea surface and the near-surface atmosphere from the MMOP are negative, and data from the buoys also indicate that the differences are negative between the sea surface and near-surface atmosphere on the right rear portion of tropical cyclones (TCs) Molave and Chanthu. However, the differences are positive on the left fi'ont portion of Molave and Chanthu. These positive differences suggest that the heat flux is transferred from the ocean to the atmosphere, thus intensifying and maintaining the two TCs. The negative differences indicate that the ocean removes heat fluxes from the atmosphere, thus weakening the TCs. The wind-wave curves of TCs Molave and Chanthu show that significant wave height increases linearly with 2-min wind speed at 10-m height when the wind speed is less than 25 m/s, but when the wind speed is greater than 25 m/s, the significant wave height increases slightly with the wind speed. By comparing the observed sensible heat, latent heat, and friction velocity from EC with these variables from COARE 3.0 algorithm, a great bias between the observed and calculated sensible heat and latent heat fluxes is revealed, and the observed friction velocity is found to be almost the same as the calculated friction velocity.展开更多
To investigate whether the Asian monsoon influences tropical cyclone (TC) activity over the South China Sea (SCS), TCs (including tropical storms and typhoons) over the SCS are analyzed using the Joint Typhoon Warning...To investigate whether the Asian monsoon influences tropical cyclone (TC) activity over the South China Sea (SCS), TCs (including tropical storms and typhoons) over the SCS are analyzed using the Joint Typhoon Warning Center dataset from 1945 to 2009. Results show an increasing trend in the frequencies of TC-all (all TCs over the SCS) and TY-all (all typhoons over the SCS), due mainly to an increase in the number of TCs moving into the SCS after development elsewhere. Little change is seen in the number of TCs that form in the SCS. The results of wavelet analysis indicate that the frequency of typhoons (TY) shows a similar oscillation as that of TCs, i.e., a dominant periodicity of 8-16 years around the 1970s for all TC activity, except for TC-mov (TCs that moved into the SCS from the western North Pacific). To examine the relationship between typhoon activity and the summer monsoon, a correlation analysis was performed that considered typhoons, TCs, and five monsoon indexes. The analysis reveals statistically significant negative correlation between the strength of the Southwest Asian summer monsoon and typhoon activity over the SCS, which likely reflects the effect of the monsoon on TC formation in the western North Pacific (WNP) and subsequent movement into the SCS. There is a statistically significant negative correlation between TY-loc (typhoons that developed from TCs formed over the SCS) and the South China Sea summer monsoon and Southeast Asian summer monsoon.展开更多
Trends of the tropical cyclones (TCs) influence on China and its four subregions,namely the South China (SC),East China (EC),Northeast China (NEC),and China's inland area (CI),are detected by applying quantile reg...Trends of the tropical cyclones (TCs) influence on China and its four subregions,namely the South China (SC),East China (EC),Northeast China (NEC),and China's inland area (CI),are detected by applying quantile regression to the CMA-STI tropical cyclone best track and related severe wind and precipitation observation datasets.The results indicate that in the past 50 years,the number of TCs affecting China and its four subregions has remained steady,except that the frequency in extremely active years has decreased not only in China as a whole,but also in NEC.In addition,TC activity is found to have weakened over the northwest South China Sea,Guangdong,and Shandong Peninsula.However,the most important changes in seasonality are found in the first quartiles of the number of days of TCs affecting CI.While the extreme values of sustained winds all have decreasing trends,the extreme values of wind gusts are completely different not only among different orders of extreme values,but also among different subregions.However,the trends of extreme TC rainfall,namely the maximum storm precipitation and the maximum 1-h precipitation,are not significant.展开更多
文摘The relationship between the upper ocean thermal structure and the genesis locations of tropical cyclones (TCs) in the South China Sea (SCS) is investigated by using the Joint Typhoon Warning Center (JTWC) best-track archives and high resolution (1/4 degree) temperature analyses of the world's oceans in this paper. In the monthly mean genesis positions of TCs from 1945 to 2005 in the SCS, the mean sea surface temperature (SST) was 28.8℃ and the mean depth of 26℃ water was 53.1 m. From the monthly distribution maps of genesis positions of TCs, SST and the depth of 26℃ water in the SCS, we discovered that there existed regions with SST exceeding 26℃ and 26℃ water depth exceeding 50 m where no tropical cyclones formed from 1945 to 2005 in the SCS, which suggests that there were other factors unfavorable for TC formation in these regions.
基金This work was jointly supported by General Project of Technological Innovation and Application Demonstration of Chongqing Municipality[cstc2018jscx-msybX0165]Special Project for Development of Key Technology for Meteorological Forecast Service of China Meteorological Administration[YBGJXM(2018)04-08]+1 种基金National Natural Science Foundation of China[41875111]Innovation Team Project of Intelligent Meteorological Technology of Chongqing Meteorological Bureau[ZHCXTD-201804].
文摘Tropical cyclones(TCs)in the South China Sea(SCS)cause serious disasters and loss every year to the coastal and inland areas of southern China.The types of TCs are usually difficult to forecast,and studies on the understanding of the TCs affecting the SCS are lacking.In this study,the authors use the TC data during 1965–2017 from two best-track datasets to analyse the climatic characteristics in terms of the frequency,the track activity,and the influencing indexes of the TCs affecting the SCS and investigate the possible causes.The results show that,during 1965–2017,there were 535 TCs affecting the SCS,mainly occurring from June to November of each year,with the annual average frequency exhibiting a significant downward trend.Meanwhile,the frequency of the track activity in most areas of the SCS also demonstrate a remarkable decreasing trend but an increase in the Gulf of Tonkin and the Taiwan Strait.The large-scale environmental anomalous westerlies and the decrease of humidity in the mid-and low-level over the northern part of the SCS are likely the main causes for the decrease in frequency and the track activity.In addition,the analysis using the cyclone activity index shows that the influence of the before mentioned TCs in southern China gradually decreases,while the influence of TCs in the SCS show a decreasing trend during past decades.
文摘China is one of the countries most severely suffering from tropical cyclones. The exact and timely forecasting and warning is of significant importance in fighting against tropical cyclones and mitigating their impacts on China. The numerical weather prediction (NWP) system for tropical cyclone rainfall and strong wind is going to play a more and more important role. There is also a need for timely and user friendly modem warning services in order to provide the governments and relevant authorities at all levels and general public with typhoon forecasts and information about the associated disasters and response strategy services.
基金supported by the Special Climate Change Research Program of China Meteorological Administration (No. CCSF-09-11, CCSF-09-03, CCSF2011-25, and CCSF201211)the Science and Technology Planning Project of Guangdong province (No.2011A030200021)
文摘Daily climate data at 110 stations during 1961-2010 were selected to examine the changing characteristics of climate factors and extreme climate events in South China. The annual mean surface air temperature has increased significantly by 0.16℃ per decade, most notably in the Pearl River Delta and in winter. The increase rate of the annual extreme minimum temperature (0.48℃ per decade) is over twice that of the annual extreme maximum temperature (0.20℃ per decade), and the increase of the mean temperature is mainly the result of the increase of the extreme minimum temperature. The increase rate of high-temperature days (1.1 d per decade) is close to the decrease rate of low-temperature days (-1.3 d per decade). The rainfall has not shown any significant trend, but the number of rainy days has decreased and the rain intensity has increased. The regional mean sunshine duration has a significant decreasing trend of -40.9 h per decade, and the number of hazy days has a significant increasing trend of 6.3 d per decade. The decrease of sunshine duration is mainly caused by the increase of total cloud, not by the increase of hazy days in South China. Both the regional mean pan evaporation and mean wind speed have significant decreasing trends of -65.9 mm per decade and -0.11 m s-1 per decade, respectively. The decrease of both sunshine duration and mean wind speed plays an important role in the decrease of pan evaporation. The number of landing tropical cyclones has an insignificant decreasing trend of -0.6 per decade, but their intensities show a weak increasing trend. The formation location of tropical cyclones landing in South China has converged towards 10-19°N, and the landing position has shown a northward trend. The date of the first landfall tropical cyclone postpones 1.8 d per decade, and the date of the last landfall advances 3.6 d per decade, resulting in reduction of the typhoon season by 5.4 d per decade.
基金funded by the Strategic Priority Research Program of the Chinese Academy of Sciences with Grant No.XDA11010000the National Natural Science Foundation of China (No.41205026)+6 种基金the National Basic Research Program of China (2011CB403500)the Innovation Group Program of State Key Laboratory of Tropical Oceanography (LTOZZ1201)Dr.Lei Wang was also sponsored by the Knowledge Innovation Program of the Chinese Academy of Sciences (SQ201208)the foundation for returned scholars of Ministry of Education of Chinathe specialized research fund for the doctoral program of Higher Education for Youthsthe foundation of Guangdong Educational Committee for Youths (2012 LYM_0008)the open fund of the Key Laboratory of Ocean Circulation and Waves of Chinese Academy of Sciences (KLOCAW1309)
文摘This study examines the modulation of tropical cyclogenesis over the South China Sea (SCS) by the E1 Nifio-Southem Oscillation (ENSO) Modoki during the boreal summer. Results reveal that there were more tropical cyclones (TCs) formed over the SCS during central Pacific warming years and less TC frequency during central Pacific cooling years. How different environmental factors (including low-level relative vorticity, mid-level relative humidity, vertical wind shear, and potential intensity) contribute to this influence is investigated, using a genesis potential (GP) index developed by Emanuel and Nolan. Composite anomalies of the GP index are produced for central Pacific warming and cooling years separately, which could account for the changes of TC frequency over the SCS in different ENSO Modoki phases. The degree of contribution by each factor is determined quantitatively by producing composites of modified indices in which only one of the contributing factors varies, with the others set to climatology. The results suggest that the vertical wind shear and low-level relative vorticity, which are associated with the ENSO Modold-induced anomalous circulations in Matsuno-Gill patterns, make the largest contributions to the ENSO Modoki modulation of tropical cyclogenesis over the SCS as implied by the GP index. These results highlight the important roles of dynamic factors in the modulation of TC fre-quency over the SCS by the ENSO Modold during the boreal summer.
基金supported by the National Key Technology Research and Development Program(No. 2008BAC44B03,2007BAC29B04)
文摘Decadal variations of extreme tropical cyclones (TCs) influencing China were. investigated based on the tracks, landfall information, precipitation and wind data during 1949-2009. The extreme landfall date events are less in the 1970s and 2000s. The number of extreme events of maximum wind speed and minimum pressure near TC's center reached the highest in the 2000s. The extreme rain duration events had the highest frequence in the 1970s, and the extreme strong wind duration events had the maximum frequence in the 1980s. The number of stations whereat the extreme maximum daily precipitation or process precipitation is observed, is the largest in the 1960s, and the number of stations whereat daily maximum wind speed events axe observed, is the largest in the 1980s.
基金National Natural Science Foundation of Ningbo City(2013A610124)Ningbo Planning Project of Science and Technology(2012C50044)Nanhai Disaster Mitigation Fund of Hainan Provincial Meteorological Bureau(NH2008ZY02)
文摘Based on the tropical cyclone data from the Central Meteorological Observatory of China, Japan Meteorological Agency, Joint Typhoon Warning Center and European Centre for Medium-Range Weather Forecasts (ECMWF) during the period of 2004 to 2009, three consensus methods are used in tropical cyclone (TC) track forecasts. Operational consensus results show that the objective forecasts of ECMWF help to improve consensus skill by 2%, 3%-5% and 3%-5%, decrease track bias by 2.5 kin, 6-9 km and 10-12 km for the 24 h, 48 h and 72 h forecasts respectively over the years of 2007 to 2009. Analysis also indicates that consensus forecasts hold positive skills relative to each member. The multivariate regression composite is a method that shows relatively low skill, while the methods of arithmetic averaging and composite (in which the weighting coefficient is the reciprocal square of mean error of members) have almost comparable skills among members. Consensus forecast for a lead time of 96 h has negative skill relative to the ECMWF objective forecast.
基金Natural Science Foundation of China(40765002)Public Interest Research Special Foundation(meteorology)of China(200906002)
文摘According to the national standard(2006)on tropical cyclone(TC)intensity,TCs are categorized into six intensity types,namely,tropical depression(TD),tropical storm(TS),severe tropical storm(STS), typhoon(TY),severe typhoon(STY),and super severe typhoon(SSTY).Fifty-eight years(1949–2006)of the datasets from the Yearbook of Typhoons and Yearbook of Tropical Cyclones were used to study the variation characteristics of TCs making landfalls in China's Mainland,Hainan and Taiwan islands.The main results are as follows.First,interannual or interdecadal variations in the number of landfalling TCs at different intensities exist.As far as long-term trends are concerned,the TD and TS frequencies show a significant linearly decreasing trend while those of STY show a significant linearly increasing trend.Second, a significant period of 6–8 years exist in the variations of annual landfalling TD,TS,and STS frequencies while quasi-16-year periods are found in the annual TY frequency.Third,TD and TS are generated mostly over the South China Sea,while TY,STY,and SSTY mostly over the waters southeast of the Bashi Channel and the ocean to the east of the Philippines.Fourth,as far as interdecadal trends are concerned,the frequencies of landfalling TD and TS generated over the South China Sea show significant linearly decreasing trends.However,TY and STY show significant linearly increasing trends.
基金funded by the tropical marine meteorology fund from the Institute of Tropical and Marine Meteorology CMAthe National Basic Research Program of China(2011CB403500)+2 种基金SOED1108LED1002the Fundamental Research Funds for the Central Universities (No.11lgpy13)
文摘This study examines the seasonal variations of tropical cyclogenesis over the South China Sea (SCS) using a genesis potential (GP) index developed by Emanuel and Nolan. How different environmental factors (including low-level vorticity, mid-level relative humidity, vertical wind shear, and potential intensity) contribute to these variations is investigated. Composite anomalies of the GP index are produced for the summer and winter monsoons separately. These composites replicate the observed seasonal variations of the observed frequency and location of tropical cyclogenesis over the SCS. The degree of contribution by each factor in different regions is determined quantitatively by producing composites of modified indices in which only one of the contributing factors varies, with the others set to climatology. Over the northern SCS, potential intensity makes the largest contributions to the seasonal variations in tropical cyclogenesis. Over the southern SCS, the low-level relative vorticity plays the primary role in the seasonal modulation of tropical cyclone (TC) genesis frequency, and the vertical wind shear plays the secondary role. Thermodynamic factors play more important roles for the seasonal variations in tropical cyclogenesis over the northern SCS, while dynamic factors are more important in the seasonal modulation of TC genesis frequency over the southern SCS.
基金National Natural Science Foundation of China (41005051)Applicability of various multi-model ensemble approaches in seasonal precipitation prediction
文摘Analysis of the climatic characteristics of the tropical cyclones that affect China yields several interesting features. The frequency of these tropical cyclones tended to decrease from 1951 to 2005, with the lowest frequency in the past ten years. The decrease in the frequency of super typhoons is particularly significant. The main season of tropical cyclone activities is from May to November, with an active period from July to September. There are three obvious sources of these tropical cyclones and they vary with seasons and decades. Their movement has also changed with seasons. On average, these tropical cyclones affect China for 5.6 months annually and the period of influence decreases in the past decades. An analysis of daily data indicates that the days of typhoon influence are shorter in winter and spring and longer in summer. The frequency of tropical cyclones is the largest over southeastern China, decreasing northwestward. Taiwan is the region that is affected by tropical cyclones most frequently. The average annual precipitation associated with tropical cyclones has also decreased gradually northwestward from southeastern China.
基金Supported by the National Basic Research Program of China (973 Program)(No.2011CB403500)the Knowledge Innovation Program of Chinese Academy of Sciences (Nos. KZCX2-YW-Q11-02, XDA05090404)+1 种基金the National Basic Research Program of China (973 Program) (No. 2010CB950302)the Qianren and Changjiang Scholar Projects, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)and SOEST-8711 & IPRC-901
文摘Tropical cyclone (TC) genesis in the South China Sea (SCS) during 1979-2008 underwent a decadal variation around 1993. A total of 55 TCs formed in the SCS from May to September during 1994- 2008, about twice that during 1979-1993 (27). During the TC peak season (July-September, JAS), there were 43 TCs fi'om 1994-2008, but only 17 during 1979-1993. For July in particular, 13 TCs formed from 1994-2008, but there were none during 1979-1993. The change in TC number is associated with changes of key environmental conditions in atmosphere and ocean. Compared to 1979-1993, the subtropical high was significantly weaker and was displaced more eastward during 1994-2008. In the former period, a stronger subtropical high induced downward flow, inhibiting TC formation. In the latter period, vertical wind shear and outgoing longwave radiation all weakened. Mid-level (850-500 hPa) humidity, and relative vorticity were higher. Sea surface temperature and upper layer heat content were also higher in the area. All these factors favor TC genesis during the latter period. The decadal change of TC genesis led to more landfalling TCs in Southern China during the period 1994-2008, which contributed to an abrupt increase in regional rainfall.
基金Key Project of Natural Science Foundation of China(40730948)National Basic Research Program of China(2009CB421501)National Natural Science Foundation of China(41075051)
文摘In this paper, the observational data from Marine and Meteorological Observation Platform (MMOP) at Bohe, Maoming and buoys located in Shanwei and Maoming are used to study the characteristics of air-sea temperature and specific humidity difference and the relationship between wind and wave with the tropical cyclones over the South China Sea (SCS). The heat and momentum fluxes from eddy covariance measurement (EC) are compared with these fluxes calculated by the COARE 3.0 algorithm for Typhoon Koppu. The results show that at the developing and weakening stages of Koppu, both these differences between the sea surface and the near-surface atmosphere from the MMOP are negative, and data from the buoys also indicate that the differences are negative between the sea surface and near-surface atmosphere on the right rear portion of tropical cyclones (TCs) Molave and Chanthu. However, the differences are positive on the left fi'ont portion of Molave and Chanthu. These positive differences suggest that the heat flux is transferred from the ocean to the atmosphere, thus intensifying and maintaining the two TCs. The negative differences indicate that the ocean removes heat fluxes from the atmosphere, thus weakening the TCs. The wind-wave curves of TCs Molave and Chanthu show that significant wave height increases linearly with 2-min wind speed at 10-m height when the wind speed is less than 25 m/s, but when the wind speed is greater than 25 m/s, the significant wave height increases slightly with the wind speed. By comparing the observed sensible heat, latent heat, and friction velocity from EC with these variables from COARE 3.0 algorithm, a great bias between the observed and calculated sensible heat and latent heat fluxes is revealed, and the observed friction velocity is found to be almost the same as the calculated friction velocity.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-Q11-02)
文摘To investigate whether the Asian monsoon influences tropical cyclone (TC) activity over the South China Sea (SCS), TCs (including tropical storms and typhoons) over the SCS are analyzed using the Joint Typhoon Warning Center dataset from 1945 to 2009. Results show an increasing trend in the frequencies of TC-all (all TCs over the SCS) and TY-all (all typhoons over the SCS), due mainly to an increase in the number of TCs moving into the SCS after development elsewhere. Little change is seen in the number of TCs that form in the SCS. The results of wavelet analysis indicate that the frequency of typhoons (TY) shows a similar oscillation as that of TCs, i.e., a dominant periodicity of 8-16 years around the 1970s for all TC activity, except for TC-mov (TCs that moved into the SCS from the western North Pacific). To examine the relationship between typhoon activity and the summer monsoon, a correlation analysis was performed that considered typhoons, TCs, and five monsoon indexes. The analysis reveals statistically significant negative correlation between the strength of the Southwest Asian summer monsoon and typhoon activity over the SCS, which likely reflects the effect of the monsoon on TC formation in the western North Pacific (WNP) and subsequent movement into the SCS. There is a statistically significant negative correlation between TY-loc (typhoons that developed from TCs formed over the SCS) and the South China Sea summer monsoon and Southeast Asian summer monsoon.
基金sponsored by the Climate Change Specialized Foundation of the China Meteorological Administration(Grant No.CCSF-09-10)the National Natural Science Foundation of China(Grant Nos.40805040 and 41075071)
文摘Trends of the tropical cyclones (TCs) influence on China and its four subregions,namely the South China (SC),East China (EC),Northeast China (NEC),and China's inland area (CI),are detected by applying quantile regression to the CMA-STI tropical cyclone best track and related severe wind and precipitation observation datasets.The results indicate that in the past 50 years,the number of TCs affecting China and its four subregions has remained steady,except that the frequency in extremely active years has decreased not only in China as a whole,but also in NEC.In addition,TC activity is found to have weakened over the northwest South China Sea,Guangdong,and Shandong Peninsula.However,the most important changes in seasonality are found in the first quartiles of the number of days of TCs affecting CI.While the extreme values of sustained winds all have decreasing trends,the extreme values of wind gusts are completely different not only among different orders of extreme values,but also among different subregions.However,the trends of extreme TC rainfall,namely the maximum storm precipitation and the maximum 1-h precipitation,are not significant.