Based on 150-year simulations of a regional climate model, RegCM3, under the Special Report on Emissions Scenarios (SRES) A1B scenario, the effective drought index (EDI) is used to project the future drought change in...Based on 150-year simulations of a regional climate model, RegCM3, under the Special Report on Emissions Scenarios (SRES) A1B scenario, the effective drought index (EDI) is used to project the future drought change in China. During the baseline period 1986-2005, RegCM3 was found to reliably simulate the spatial pattern of drought over the country. Over the 21st century, the regionally averaged EDI should increase, corresponding to a decrease of drought, while the probability of extreme drought events should increase. Geographically, drought should clearly increase in Northeast China, the middle and lower reaches of the Yangtze River valley, Southwest China, and southern Tibet but decrease in most parts of the rest of the country.展开更多
The authors examined the performance of version 3.4.1 of the Weather Research and Forecasting Model(WRF) with various land surface schemes in simulating a severe drought event in Southwest China. Five numerical experi...The authors examined the performance of version 3.4.1 of the Weather Research and Forecasting Model(WRF) with various land surface schemes in simulating a severe drought event in Southwest China. Five numerical experiments were completed using the Noah land surface scheme, the Pleim-Xiu land surface scheme, the Noah-MP land surface schemes, the Noah- MP scheme with dynamic vegetation, and the Noah-MP scheme with dynamic vegetation and groundwater processes. In general, all the simulations reasonably reproduced the spatial and temporal variations in precipitation, but significant bias was also found, especially for the spatial pattern of simulated precipitation. The WRF simulations with the Noah-MP series land surface schemes performed slightly better than the WRF simulation with the Noah and Pleim-Xiu land surface schemes in reproducing the severe drought events in Southwest China. The leaf area index(LAI) simulated by the different land surface schemes showed significant deviations in Southwest China. The Pleim-Xiu scheme overestimated the value of LAI by a factor of two. The Noah-MP scheme with dynamical vegetation overestimated the magnitude of the annual cycle of the LAI, although the annual mean LAI was close to observations. The simulated LAI showed a long-term lower value from autumn 2009 to spring 2010 relative to normal years. This indicates that the LAI is a potential indictor to monitor drought events.展开更多
Drought is the most widespread and insidious natural hazard, presenting serious challenges to ecosystems and human society. The daily Standardized Precipitation Evapotranspiration Index(SPEI) has been developed to ide...Drought is the most widespread and insidious natural hazard, presenting serious challenges to ecosystems and human society. The daily Standardized Precipitation Evapotranspiration Index(SPEI) has been developed to identify the regional spatiotemporal characteristics of drought conditions from 1960 to 2016, revealing the variability in drought characteristics across Southwest China. Daily data from142 meteorological stations across the region were used to calculate the daily SPEI at the annual and seasonal time scale. The Mann-Kendall test and the trend statistics were then applied to quantify the significance of drought trends, with the following results. 1) The regionally averaged intensity and duration of all-drought and severe drought showed increasing trends, while the intensity and duration of extreme drought exhibited decreasing trends. 2) Mixed(increasing/decreasing) trends were detected, in terms of intensity and duration, in the three types of drought events. In general, no evidence of significant trends(P < 0.05) was detected in the drought intensity and duration over the last 55 years at the annual timescale. Seasonally, spring was characterized by a severe drought trend for all drought and severe drought conditions, while extreme drought events in spring and summer were very severe. All drought intensities and durations showed an increasing trend across most regions, except in the northwestern parts of Sichuan Province. However, the areal extent of regions suffering increasing trends in severe and extreme drought became relatively smaller. 3) We identified the following drought hotspots: Guangxi Zhuang Autonomous Region from the 1960 s to the 1990 s, respectively. Guangxi Zhuang Autonomous Region and Guizhou Province in the 1970 s and 1980 s, and Yunnan Province in the 2000 s. Finally, this paper can benefit operational drought characterization with a day-to-day drought monitoring index, enabling a more risk-based drought management strategy in the context of global warming.展开更多
The severest drought on record occurred in southwestern China from September 2009 until March 2010. In order to measure the impact the drought imposed on vegetation, we developed an evaluation indicator called the Veg...The severest drought on record occurred in southwestern China from September 2009 until March 2010. In order to measure the impact the drought imposed on vegetation, we developed an evaluation indicator called the Vegetation Index Anomaly (VIA) based on MODIS/EVI. The tempo- spatial pattern of this impact was analyzed. Given that this impact may be modulated by many factors, the responses of different vegetation types (woodland, grassland and cropland), and the spatial pattern of meteorological drought were also analyzed. Results show that more than 50% of vegetation suffered because of this drought event, but there was significant tempo-spatial variability in the range and intensity of impact. This variability may be caused by many factors. Of the three major vegetation types, cropland was the most sensitive to drought, followed by grassland and then woodland. In addition, meteorological factors (precipitation and air temperature) also played a role; however, obvious differences exist between the spatial distribution pattern of drought-stricken vegetation and that of meteorological drought, which further demonstrates the intervention of other factors besides meteorological factors. So compared to meteorological drought, the vegetation index may be more useful for measuring the actual intensity, duration and impact of drought events. The limitations of vegetation indices are also considered.展开更多
基金supported by the National Basic Research Program of China(Grant No.2009CB421407)the National Natural Science Foundation of China(Grant No.41130103)
文摘Based on 150-year simulations of a regional climate model, RegCM3, under the Special Report on Emissions Scenarios (SRES) A1B scenario, the effective drought index (EDI) is used to project the future drought change in China. During the baseline period 1986-2005, RegCM3 was found to reliably simulate the spatial pattern of drought over the country. Over the 21st century, the regionally averaged EDI should increase, corresponding to a decrease of drought, while the probability of extreme drought events should increase. Geographically, drought should clearly increase in Northeast China, the middle and lower reaches of the Yangtze River valley, Southwest China, and southern Tibet but decrease in most parts of the rest of the country.
基金support was provided by the National Basic Research Program of China (Project 2012CB956203)the Special Fund for Meteorological Research in the Public Interest (Grant No. GYHY201006023)+1 种基金the National Key Technologies R&D Program of China (Grant No. 2012BAC22B04)the National Natural Science Foundation of China (General Program, Grant No. 41105039)
文摘The authors examined the performance of version 3.4.1 of the Weather Research and Forecasting Model(WRF) with various land surface schemes in simulating a severe drought event in Southwest China. Five numerical experiments were completed using the Noah land surface scheme, the Pleim-Xiu land surface scheme, the Noah-MP land surface schemes, the Noah- MP scheme with dynamic vegetation, and the Noah-MP scheme with dynamic vegetation and groundwater processes. In general, all the simulations reasonably reproduced the spatial and temporal variations in precipitation, but significant bias was also found, especially for the spatial pattern of simulated precipitation. The WRF simulations with the Noah-MP series land surface schemes performed slightly better than the WRF simulation with the Noah and Pleim-Xiu land surface schemes in reproducing the severe drought events in Southwest China. The leaf area index(LAI) simulated by the different land surface schemes showed significant deviations in Southwest China. The Pleim-Xiu scheme overestimated the value of LAI by a factor of two. The Noah-MP scheme with dynamical vegetation overestimated the magnitude of the annual cycle of the LAI, although the annual mean LAI was close to observations. The simulated LAI showed a long-term lower value from autumn 2009 to spring 2010 relative to normal years. This indicates that the LAI is a potential indictor to monitor drought events.
基金Under the auspices of National Natural Science Foundation of China(No.41561024)Philosophy Social Science Foundation of Shanxi Province of China(No.2015265)
文摘Drought is the most widespread and insidious natural hazard, presenting serious challenges to ecosystems and human society. The daily Standardized Precipitation Evapotranspiration Index(SPEI) has been developed to identify the regional spatiotemporal characteristics of drought conditions from 1960 to 2016, revealing the variability in drought characteristics across Southwest China. Daily data from142 meteorological stations across the region were used to calculate the daily SPEI at the annual and seasonal time scale. The Mann-Kendall test and the trend statistics were then applied to quantify the significance of drought trends, with the following results. 1) The regionally averaged intensity and duration of all-drought and severe drought showed increasing trends, while the intensity and duration of extreme drought exhibited decreasing trends. 2) Mixed(increasing/decreasing) trends were detected, in terms of intensity and duration, in the three types of drought events. In general, no evidence of significant trends(P < 0.05) was detected in the drought intensity and duration over the last 55 years at the annual timescale. Seasonally, spring was characterized by a severe drought trend for all drought and severe drought conditions, while extreme drought events in spring and summer were very severe. All drought intensities and durations showed an increasing trend across most regions, except in the northwestern parts of Sichuan Province. However, the areal extent of regions suffering increasing trends in severe and extreme drought became relatively smaller. 3) We identified the following drought hotspots: Guangxi Zhuang Autonomous Region from the 1960 s to the 1990 s, respectively. Guangxi Zhuang Autonomous Region and Guizhou Province in the 1970 s and 1980 s, and Yunnan Province in the 2000 s. Finally, this paper can benefit operational drought characterization with a day-to-day drought monitoring index, enabling a more risk-based drought management strategy in the context of global warming.
基金Scientific Survey on the middle- and lower-reaches of Lancang (Mekong) River and Grand Shangri-La Area (2008FY110300)
文摘The severest drought on record occurred in southwestern China from September 2009 until March 2010. In order to measure the impact the drought imposed on vegetation, we developed an evaluation indicator called the Vegetation Index Anomaly (VIA) based on MODIS/EVI. The tempo- spatial pattern of this impact was analyzed. Given that this impact may be modulated by many factors, the responses of different vegetation types (woodland, grassland and cropland), and the spatial pattern of meteorological drought were also analyzed. Results show that more than 50% of vegetation suffered because of this drought event, but there was significant tempo-spatial variability in the range and intensity of impact. This variability may be caused by many factors. Of the three major vegetation types, cropland was the most sensitive to drought, followed by grassland and then woodland. In addition, meteorological factors (precipitation and air temperature) also played a role; however, obvious differences exist between the spatial distribution pattern of drought-stricken vegetation and that of meteorological drought, which further demonstrates the intervention of other factors besides meteorological factors. So compared to meteorological drought, the vegetation index may be more useful for measuring the actual intensity, duration and impact of drought events. The limitations of vegetation indices are also considered.