China is experiencing rapid urbanization that has changed the water quality of rivers, especially nutrient loads. In this study, a typical urban river located in a karst area, Chengguan River, was chosen to explore th...China is experiencing rapid urbanization that has changed the water quality of rivers, especially nutrient loads. In this study, a typical urban river located in a karst area, Chengguan River, was chosen to explore the influence of urbanization on river ecosystems based on nutrient concentration and nitrate isotopes. The results show monthly variability of water chemistry and nutrient concentration. Nutrient concentration in two tributaries and the mainstem showed significant spatial variability, with heavy N and P pollution in one tributary near a suburban area,indicating a response to different levels of urbanization.Measurements of nitrate dual isotopes suggest thatvolatilization, assimilation, nitrification, and denitrification all occur in the polluted river. Water chemistry and nitrate isotopes show that major nitrogen sources included domestic waste and agricultural input, such as chemical fertilizer and manure. The results suggest that urbanization increases nutrient concentrations and accelerates the riverine nitrogen dynamic, and point to the need to manage point sources of sewage effluents to improve the water quality of urban rivers in southwestern China.展开更多
In a case study in Tao River Basin, China, we derived a high spatial-resolution regional distribution of evapotranspiration(ET) using the single crop coefficient method and Budyko equation. We then further analyzed th...In a case study in Tao River Basin, China, we derived a high spatial-resolution regional distribution of evapotranspiration(ET) using the single crop coefficient method and Budyko equation. We then further analyzed the spatio-temporal characteristics of this diverse eco-hydrological basin from 2001–2010. The results suggest that the single crop coefficient method based on leaf area index captures better spatial and temporal dynamics of the regional ET than did the Budyko Equation method. The rising temperature was the main reason for the increasing ET in the Tao River Basin during 2001–2010. Areas with high ET efficiency were distributed mainly in the areas where the vegetation coverage was high, and a lower runoff coefficient responded. The estimated spatial patterns of ET allowed an improved understanding of the eco-hydrological processes within the Tao River Basin and the method used might be generalized as a reference for future regional-scale eco-hydrological research.展开更多
基金financially supported by National Natural Science Foundation of China(Grant Nos.41571130072 and41130536)the Ministry of Science and Technology of China through Grant Nos.2016YFA0601000 and 2013CB956700
文摘China is experiencing rapid urbanization that has changed the water quality of rivers, especially nutrient loads. In this study, a typical urban river located in a karst area, Chengguan River, was chosen to explore the influence of urbanization on river ecosystems based on nutrient concentration and nitrate isotopes. The results show monthly variability of water chemistry and nutrient concentration. Nutrient concentration in two tributaries and the mainstem showed significant spatial variability, with heavy N and P pollution in one tributary near a suburban area,indicating a response to different levels of urbanization.Measurements of nitrate dual isotopes suggest thatvolatilization, assimilation, nitrification, and denitrification all occur in the polluted river. Water chemistry and nitrate isotopes show that major nitrogen sources included domestic waste and agricultural input, such as chemical fertilizer and manure. The results suggest that urbanization increases nutrient concentrations and accelerates the riverine nitrogen dynamic, and point to the need to manage point sources of sewage effluents to improve the water quality of urban rivers in southwestern China.
基金supported by the Doctoral Program of China’s Higher Education Research Fund(Grant No.20110211110011)the National Natural Science Foundation of China(Grant Nos.41001014,41240002,51209119)
文摘In a case study in Tao River Basin, China, we derived a high spatial-resolution regional distribution of evapotranspiration(ET) using the single crop coefficient method and Budyko equation. We then further analyzed the spatio-temporal characteristics of this diverse eco-hydrological basin from 2001–2010. The results suggest that the single crop coefficient method based on leaf area index captures better spatial and temporal dynamics of the regional ET than did the Budyko Equation method. The rising temperature was the main reason for the increasing ET in the Tao River Basin during 2001–2010. Areas with high ET efficiency were distributed mainly in the areas where the vegetation coverage was high, and a lower runoff coefficient responded. The estimated spatial patterns of ET allowed an improved understanding of the eco-hydrological processes within the Tao River Basin and the method used might be generalized as a reference for future regional-scale eco-hydrological research.