连云港市位于中国江苏省北部,该地滨海湿地位于东亚-澳大利西亚迁飞路线(East Asia-Australasian F lyway,EAAF)的中心。连云港是候鸟在迁飞途中的重要停歇点之一,也是一个人口密集且正在快速发展的滨海城市。2003—2018年间,27%的连云...连云港市位于中国江苏省北部,该地滨海湿地位于东亚-澳大利西亚迁飞路线(East Asia-Australasian F lyway,EAAF)的中心。连云港是候鸟在迁飞途中的重要停歇点之一,也是一个人口密集且正在快速发展的滨海城市。2003—2018年间,27%的连云港潮间带被围垦,并逐步转化为工业园区和水产养殖塘。然而,这些区域目前仍有重要的保护价值。在2008—2018年的调查期间,连云港共记录到鹬类43种,其中有20种超过了1%的EAAF种群总数。此前的调查仅由一名当地调查员执行展开,这意味着调查结果在时间和空间的维度上都十分局限。为了对这片区域的水鸟,尤其是鹬类有更深入的了解,2019年5月9—13日,笔者团队在连云港市的临洪河口、青口河口和兴庄河口开展了水鸟同步调查,以期推动更有效的水鸟及其栖息地的保育工作。展开更多
The distribution of the suspended sediment concentration (SSC) in the Bohai Sea, Yellow Sea and East China Sea (BYECS) is studied based on the observed turbidity data and model simulation results. The observed tur...The distribution of the suspended sediment concentration (SSC) in the Bohai Sea, Yellow Sea and East China Sea (BYECS) is studied based on the observed turbidity data and model simulation results. The observed turbidity results show that (i) the highest SSC is found in the coastal areas while in the outer shelf sea areas turbid water is much more difficult to observe, (ii) the surface layer SSC is much lower than the bottom layer SSC and (iii) the winter SSC is higher than the summer SSC. The Regional Ocean Modeling System (ROMS) is used to simulate the SSC distribution in the BYECS. A comparison between the modeled SSC and the observed SSC in the BYECS shows that the modeled SSC can reproduce the principal features of tlte SSC distribution in the BYECS. The dynamic mechanisms of the sediment erosion and transport processes are studied based on the modeled results. The horizontal distribution of the SSC in the BYECS is mainly determined by the current-wave induced bottom stress and the fine-grain sediment distribution. The current-induced bottom stress is much higher than the wave-induced bottom stress, which means the tidal currents play a more significant role in the sediment resuspension than the wind waves. The vertical mixing strength is studied based on the mixed layer depth and the turbulent kinetic energy distribution in the BYECS. The strong winter time vertical mixing, which is mainly caused by the strong wind stress and surface cooling, leads to high surface layer SSC in winter. High surface layer SSC in summer is restricted in the coastal areas.展开更多
Two typical satellite sea surface temperature (SST) datasets, from the Multi-functional Transport Satellite (MTSAT) and Tropical Rainfall Measuring Mission Microwave Imager (TMI), were evaluated for the East China Sea...Two typical satellite sea surface temperature (SST) datasets, from the Multi-functional Transport Satellite (MTSAT) and Tropical Rainfall Measuring Mission Microwave Imager (TMI), were evaluated for the East China Sea, Yellow Sea, and Bohai Sea throughout 2008. Most monthly-mean availabilities of MTSAT are higher than those of TMI, whereas the seasonal variation of the latter is less than that of the former. The analysis on the one-year data shows that the annual mean availability of MTSAT (61%) is greater than that of TMI (56%). This is mainly because MTSAT is a geostationary satellite, which achieves longer observation than the sun-synchronous TMI. The daily availability of TMI (28%-75%) is more constant than that of MTSAT (9%-93%). The signal of infrared sensors on MTSAT is easily disturbed on cloudy days. In contrast, the TMI microwave sensor can obtain information through clouds. Based on in-situ SSTs, the SST accuracy of TMI is superior to that of MTSAT. In 2008, the root mean square (RMS) error of TMI and MTSAT were 0.77 K and 0.84 K, respectively. The annual mean biases were 0.14 K (TMI) and -0.31 K (MTSAT). To attain a high availability of SSTs, we propose a fusion method to merge both SSTs. The annual mean availability of fusion SSTs increases 17% compared to MTSAT. In addition, the availabilities of the fusion SSTs become more constant. The annual mean RMS and bias of fusion SSTs (0.78 K and -0.06 K, respectively) are better than those of MTSAT (0.84 K and -0.31 K).展开更多
The loading tides are calculated by means of the Green's function method based on a high-resolution regional ocean tide model, the TOPO7.0 global ocean tide model, and the Gutenberg-Bullen A Earth model. The resul...The loading tides are calculated by means of the Green's function method based on a high-resolution regional ocean tide model, the TOPO7.0 global ocean tide model, and the Gutenberg-Bullen A Earth model. The results show that the maximal amplitude of M2 vertical displacement loading (VDL) tide in the Bohai, Yellow, and East China Seas exceeding 28mm appears 150km off the Zhejiang coast; the second maximum exceeding 20mm appears in Inchon Bay; and the third maximum exceeding 14mm is located in the northeast of the North Yellow Sea. The maximal amplitudes of S2 VDL tide at the above three locations exceed 10, 8, and 4mm, respectively. The maximal amplitudes of the K1 and O1 VDL tides, exceeding 13 and 10 mm respectively, appear near the central and north Ryukyu Islands; the amplitudes tend to decease toward the inward areas. The phases of semidiurnal VDL tides are basically opposite to those of corresponding ocean tides. The phases of diurnal VDL tides are basically opposite to those of corresponding ocean tides in the most part of the East China Sea and the eastern part of the South Yellow Sea. This anti-phase relationship generally does not hold in the rest parts of the Bohai and Yellow Seas. The distribution patterns of self-attraction and loading (SAL) tides are very similar to those of VDL tides. The SAL tides have amplitudes about 1.2-1.7 times of the corresponding VDL tides and their phases are basically opposite to the corresponding VDL tides. The maximal amplitude of M2 SAL tide also appears off the Zhejiang coast, with a magnitude exceeding 42mm.展开更多
文摘连云港市位于中国江苏省北部,该地滨海湿地位于东亚-澳大利西亚迁飞路线(East Asia-Australasian F lyway,EAAF)的中心。连云港是候鸟在迁飞途中的重要停歇点之一,也是一个人口密集且正在快速发展的滨海城市。2003—2018年间,27%的连云港潮间带被围垦,并逐步转化为工业园区和水产养殖塘。然而,这些区域目前仍有重要的保护价值。在2008—2018年的调查期间,连云港共记录到鹬类43种,其中有20种超过了1%的EAAF种群总数。此前的调查仅由一名当地调查员执行展开,这意味着调查结果在时间和空间的维度上都十分局限。为了对这片区域的水鸟,尤其是鹬类有更深入的了解,2019年5月9—13日,笔者团队在连云港市的临洪河口、青口河口和兴庄河口开展了水鸟同步调查,以期推动更有效的水鸟及其栖息地的保育工作。
基金supported by the China Scholarship Council and the National Basic Research Program of China(973 Program 2010CB428904 and 2005CB422300)
文摘The distribution of the suspended sediment concentration (SSC) in the Bohai Sea, Yellow Sea and East China Sea (BYECS) is studied based on the observed turbidity data and model simulation results. The observed turbidity results show that (i) the highest SSC is found in the coastal areas while in the outer shelf sea areas turbid water is much more difficult to observe, (ii) the surface layer SSC is much lower than the bottom layer SSC and (iii) the winter SSC is higher than the summer SSC. The Regional Ocean Modeling System (ROMS) is used to simulate the SSC distribution in the BYECS. A comparison between the modeled SSC and the observed SSC in the BYECS shows that the modeled SSC can reproduce the principal features of tlte SSC distribution in the BYECS. The dynamic mechanisms of the sediment erosion and transport processes are studied based on the modeled results. The horizontal distribution of the SSC in the BYECS is mainly determined by the current-wave induced bottom stress and the fine-grain sediment distribution. The current-induced bottom stress is much higher than the wave-induced bottom stress, which means the tidal currents play a more significant role in the sediment resuspension than the wind waves. The vertical mixing strength is studied based on the mixed layer depth and the turbulent kinetic energy distribution in the BYECS. The strong winter time vertical mixing, which is mainly caused by the strong wind stress and surface cooling, leads to high surface layer SSC in winter. High surface layer SSC in summer is restricted in the coastal areas.
基金Supported by the Open Fund of the Key Laboratory of Ocean Circulationand Waves,Chinese Academy of Sciences(No.KLOCAW1010)the Knowledge Innovation Program of Chinese Academy of Sciences(No.KZCX1-YW-12-04)the National High Technology Research and Development Program of China(863Program)(Nos.2007AA092202,2008AA121701)
文摘Two typical satellite sea surface temperature (SST) datasets, from the Multi-functional Transport Satellite (MTSAT) and Tropical Rainfall Measuring Mission Microwave Imager (TMI), were evaluated for the East China Sea, Yellow Sea, and Bohai Sea throughout 2008. Most monthly-mean availabilities of MTSAT are higher than those of TMI, whereas the seasonal variation of the latter is less than that of the former. The analysis on the one-year data shows that the annual mean availability of MTSAT (61%) is greater than that of TMI (56%). This is mainly because MTSAT is a geostationary satellite, which achieves longer observation than the sun-synchronous TMI. The daily availability of TMI (28%-75%) is more constant than that of MTSAT (9%-93%). The signal of infrared sensors on MTSAT is easily disturbed on cloudy days. In contrast, the TMI microwave sensor can obtain information through clouds. Based on in-situ SSTs, the SST accuracy of TMI is superior to that of MTSAT. In 2008, the root mean square (RMS) error of TMI and MTSAT were 0.77 K and 0.84 K, respectively. The annual mean biases were 0.14 K (TMI) and -0.31 K (MTSAT). To attain a high availability of SSTs, we propose a fusion method to merge both SSTs. The annual mean availability of fusion SSTs increases 17% compared to MTSAT. In addition, the availabilities of the fusion SSTs become more constant. The annual mean RMS and bias of fusion SSTs (0.78 K and -0.06 K, respectively) are better than those of MTSAT (0.84 K and -0.31 K).
基金supported by National Natural Science Foundation of China (Grant Nos. 40676009 and 40606006)Qingdao Science and Technology Basic Research Program (Grant No. 11-1-4-98-JCH)
文摘The loading tides are calculated by means of the Green's function method based on a high-resolution regional ocean tide model, the TOPO7.0 global ocean tide model, and the Gutenberg-Bullen A Earth model. The results show that the maximal amplitude of M2 vertical displacement loading (VDL) tide in the Bohai, Yellow, and East China Seas exceeding 28mm appears 150km off the Zhejiang coast; the second maximum exceeding 20mm appears in Inchon Bay; and the third maximum exceeding 14mm is located in the northeast of the North Yellow Sea. The maximal amplitudes of S2 VDL tide at the above three locations exceed 10, 8, and 4mm, respectively. The maximal amplitudes of the K1 and O1 VDL tides, exceeding 13 and 10 mm respectively, appear near the central and north Ryukyu Islands; the amplitudes tend to decease toward the inward areas. The phases of semidiurnal VDL tides are basically opposite to those of corresponding ocean tides. The phases of diurnal VDL tides are basically opposite to those of corresponding ocean tides in the most part of the East China Sea and the eastern part of the South Yellow Sea. This anti-phase relationship generally does not hold in the rest parts of the Bohai and Yellow Seas. The distribution patterns of self-attraction and loading (SAL) tides are very similar to those of VDL tides. The SAL tides have amplitudes about 1.2-1.7 times of the corresponding VDL tides and their phases are basically opposite to the corresponding VDL tides. The maximal amplitude of M2 SAL tide also appears off the Zhejiang coast, with a magnitude exceeding 42mm.