The data on the hillslope and channelized debris flows in the Shitou area of central Taiwan occurred during Typhoons Toraji and Nali in 2001 were applied in this paper. The geomorphic parameters, including the flow le...The data on the hillslope and channelized debris flows in the Shitou area of central Taiwan occurred during Typhoons Toraji and Nali in 2001 were applied in this paper. The geomorphic parameters, including the flow length, gully gradient, drainage area and form factor of the debris flows were determined by spatial analysis using a Geographic Information System (GIS) based on the data derived from field investigation, aerial photographs, and topographical maps. According to such determined geomorphic parameters, the threshold conditions and empirical equations, such as the relationship between the gully gradient and drainage area and that between gully length and drainage area and topographic parameter, are presented and used to distinguish the geomorphic characteristics between the channelized and hillslope debris flows.展开更多
Forest canopy reduces shortwave radiation and increases the incoming longwave radiation to snowpacks beneath forest canopies. Furthermore, the effect of forest canopy may be changed by complex topography. In this pape...Forest canopy reduces shortwave radiation and increases the incoming longwave radiation to snowpacks beneath forest canopies. Furthermore, the effect of forest canopy may be changed by complex topography. In this paper, we measured and simulated the incoming longwave radiation to snow beneath forest at different canopy openness in the west Tianshan Mountains, China(43°16'N, 84°24'E) during spring 2013. A sensitivity study was conducted to explore the way that terrain influenced the incoming longwave radiation to snow beneath forest canopies. In the simulation model, measurement datasets, including air temperature, incoming shortwave radiation above canopy, and longwave radiation enhanced by adjacent terrain, were applied to calculate the incoming longwave radiation to snow beneath forest canopy. The simulation results were consistent with the measurements on hourly scale and daily scale. The effect of longwave radiation enhanced by terrain was important than that of shortwave radiation above forest canopy with different openness except the 20% canopy openness. The longwave radiation enhanced due to adjacent terrain increases with the slope increase and temperature rise. When air temperature(or slope) is relatively low, thelongwave radiation enhanced by adjacent terrain is not sensitive to slope(or air temperature), but the sensitivity increases with the decrease of snow cover area on sunny slope. The effect of longwave radiation is especially sensitive when the snow cover on sunny slope melts completely. The effect of incoming shortwave radiation reflected by adjacent terrain on incoming longwave radiation to snow beneath forest canopies is more slight than that of the enhanced longwave radiation.展开更多
A field investigation on Quaternary glacial landforms in Laoshan Motmtain has discovered many glacial potholes, scouring grooves on top of granite ridges, and large boulders. These erosional landforms were formed by t...A field investigation on Quaternary glacial landforms in Laoshan Motmtain has discovered many glacial potholes, scouring grooves on top of granite ridges, and large boulders. These erosional landforms were formed by the meltwater from the overlying ice cap, suggesting that there was at least an ice cap covering Laoshan Mountain and the surrounding areas or even a continental ice sheet over the vast area of Shandong Province in the Late Pleistocene. The ice sheet was obstructed by the Laoshan Mountain, Dazhu Mountain and Xiaozhu Mountain in the coastal areas as it moved toward the Yellow Sea. The ice flows eroded the bedrock and carved the weak intersection of the fault systems in the NE and NW directions into a deep channel, which gradually formed a fjord in the area of the Jiaozhou Bay basin by 20.00 ka BE The seawater gradually invaded the fjord from the beginning of the Holocene (11.00 ka BP) and Jiaozhou Bay was eventually formed. Similar fjords are easily found along the east of China and they share a similar origin because of the Quaternary glaciation in the region.展开更多
A planation hypothesis is proposed to explain landform evolution of the Tibet Plateau. A denudation threshold (T), the maximum potential denudation rate for a certain type of rock, is introduced to explain the combi...A planation hypothesis is proposed to explain landform evolution of the Tibet Plateau. A denudation threshold (T), the maximum potential denudation rate for a certain type of rock, is introduced to explain the combined effects of lithology and tectonics on landform evolution. If the tectonic uplifting rate (U) is equal to or less than the threshold rate (U ≤ T), the tectonic uplifting and terrain denudation are in dynamic equilibrium, and landforms are in a steady state. The end product should be planation surfaces whether the original landforms are flat plains or deeply dissected mountains. If U 〉 T, uplift and denudation are not able to reach a dynamic equilibrium state. The plateau surface is mostly underlain by soft rocks, such as the Mesozoic epimetamorphic argillites and Tertiary sedimentary rocks, while the mountain ranges comprise hard rocks, such as granite, gneiss and limestone. In soft rock regions, hills are low with a relative relief of mostly less than 100 m and the slopes are gentle at a gradient of 〈200. In contrast, hills can maintain steep slopes in hard rock regions. The Tibet Plateau has been under an equilibrium condition between tectonic uplifting and denudation except for the mountain ranges. The plateau might have reached the present altitudes before the Quaternary.展开更多
In this paper a geomorphic-centered system was proposed for classifying the wetlands on the Qinghai-Tibet Plateau in western China, where the flora comprises primarily grasses. Although the geomorphic properties (e.g....In this paper a geomorphic-centered system was proposed for classifying the wetlands on the Qinghai-Tibet Plateau in western China, where the flora comprises primarily grasses. Although the geomorphic properties (e.g., elevation and morphology) of wetlands form the primary criteria of classification, this system also takes hydrological processes into implicit consideration. It represents an improvement over the hydrogeomorphic perspective as the relative importance of the two components (wetness and landform) of wetlands is clearly differentiated. This geomorphic-centered perspective yields insights into the hydrogeomorphic dynamics of plateau wetlands while indicates their vulnerability to change and degradation indirectly. According to this geomorphic-centered perspective, all plateau wetlands fall into one of the seven types of alpine, piedmont, valley, terrace, floodplain, lacustrine, and riverine in three elevational categories of upland, midland, and lowland. Upland (alpine and piedmont) wetlands with the steepest topography are the most sensitive to change whereas midland (floodplain, terrace and valley) wetlands are less vulnerable to degradation owing to a high water reserve except terrace wetlands. They have a dry surface caused by infrequent hydrological replenishment owing to their higher elevation than the channel. Low lying (lacustrine and riverine) wetlands are the most resilient. The geomorphic-centered perspective developed in this paper provides a framework for improving recognition and management of wetlands on the Plateau. Resilient wetlands can be grazed more intensively without the risk of degradation. Fragile and vulnerable wetlands require careful managementto avoid degradation.展开更多
Spatial variation of dissolved organic carbon(DOC) in soils of riparian wetlands and responses to hydro-geomorphologic changes in the Sanjiang Plain were analyzed through in situ collecting soil samples in the Naoli R...Spatial variation of dissolved organic carbon(DOC) in soils of riparian wetlands and responses to hydro-geomorphologic changes in the Sanjiang Plain were analyzed through in situ collecting soil samples in the Naoli River and the Bielahong River. The results showed that the average contents of DOC for soil layer of 0–100 cm were 730.6 mg/kg, 250.9 mg/kg, 423.0 mg/kg and 333.1 mg/kg respectively from riverbed to river terrace along the transverse directions of the Naoli watershed. The content of the soil DOC was the highest in the riverbed, lower in the high floodplain and much lower in the river terrace, and it was the lowest in the low floodplain. The difference in the content and vertical distribution of DOC between the riverbed and the three riparian wetlands was significant, while it was not significant among the low floodplain, the high floodplain and the river terrace. The variability of soil DOC was related to the hydrological connectivity between different landscape position of the riparian wetlands and the adjacent stream. Extremely significant correlations were observed between DOC and total organic carbon(TOC), total iron(TFe), ferrous iron(Fe(II)) whose correlation coefficients were 0.819, –0.544 and –0.709 in riparian wetlands of the Naoli River. With the increase of wetland destruction, soil p H increased and soil DOC content changed. The correlation coefficients between soil DOC and TOC, TFe, Fe(II) also changed into 0.759, –0.686 and –0.575 respectively in the Bielahong River. Under the impact of drainage ditches, the correlations between soil DOC and TFe, Fe(II) were not obvious, while the soil p H was weakly alkaline and was negatively correlated with soil DOC in the previous high floodplain. It indicates that riparian hydro-geomorphology is the main factor that could well explain this spatial variability of soil DOC, and the agricultural environmental hydraulic works like ditching also must be considered.展开更多
The Badain Jaran Desert,located in the Alxa Plateau,Northwest China,features mega-dunes and a unique dune-lake alternation landscape.This paper presented the aeolian sediment structures of three representative dunes i...The Badain Jaran Desert,located in the Alxa Plateau,Northwest China,features mega-dunes and a unique dune-lake alternation landscape.This paper presented the aeolian sediment structures of three representative dunes in the Badain Jaran Desert using ground-penetrating radar (GPR).We processed and analyzed the GPR data and investigated the feasibility of using integrated GPR and sedimentological data to reconstruct dunes structure,sedimentary environment and geomorphological evolution.The results show that the internal structures of star dune and transverse dune represent various stages of mega-dune evolution: the main deposition processes of mega-dune are similar to those of transverse dunes but have a more complicated mechanism of sand transport and deposition because of the superimposition of dunes;the upper section of the mega-dune has a structure similar to that of star dune,with vertical aggradations on top.Diffraction hyperbolae in the GPR profile indicates that the presence of ancient dunes characterized by calcareous cementation layers is involved in the maintenance of mega-dunes,and water levels,shown by continuous,sub-horizontal GPR reflections,are supposed to be closely related to mega-dunes and the interdune lakes.Outcrop of wet sand and horizontal stratifications on the GPR image indicate moisture potentials with different levels inside mega-dunes.The multiplex geomorphology in the Badain Jaran Desert is the result of global climatic undulation,the unique geographical location,the geological structural features,etc.展开更多
SCENERY along the world's longest highspeed railway from Beijing,on the vast North China Plain,southward to Guangzhou,over the Yellow River and Yangtze River,changes in the space of a few hours,as does the sky from o...SCENERY along the world's longest highspeed railway from Beijing,on the vast North China Plain,southward to Guangzhou,over the Yellow River and Yangtze River,changes in the space of a few hours,as does the sky from overcast to pure and fresh.Mount Danxia then comes into view through the shifting clouds,among the red sandstone landforms that are named after it.展开更多
The Quaternary continental slope of the Baiyun Sag in northern South China Sea is characterized by a complex topography and abundant gravity flow sedimentation.High-resolution 3-D seismic data in this area allow for a...The Quaternary continental slope of the Baiyun Sag in northern South China Sea is characterized by a complex topography and abundant gravity flow sedimentation.High-resolution 3-D seismic data in this area allow for a detailed study of the seismic geomorphology and deep-water gravity flow depositional process.The Quaternary continental slope in the northern South China Sea is an above-graded slope.An intraslope basin lies within the above-grade continental slope.Slump,erosion,and deposition processes tend to develop a gentle topography and consequently a graded slope.The upper continental slope,which is above the slope equilibrium profile,is dominated by erosion and slumping.Slides,slumps and erosional channels are developed within this continental slope.The intraslope basin is located below the slope equilibrium profile and is potential accommodation space where sediments transported by gravity flows could be deposited,forming lobe aprons.Under the influence of gravity flow supply,gravity flow duration,continental slope topography,equilibrium profile,and accommodation,a slump-erosional channel-lobe depositional system is developed in the Quaternary continental slope in the Baiyun Sag.The deep-water gravity flow depositional process and the distribution of gravity flow sediments are greatly influenced by the continental slope topography,while the continental slope topography at the same time is reshaped by deep-water gravity flow depositional process and its products.The study of the interplay between the continental slope and gravity flow is helpful in predicting the distribution of the deep-water gravity flow sediments and the variation of sediment quality.展开更多
The geomorphic evolution of northwestern China during the Cenozoic has been a subject of much geological interest because of its link with the uplift of the Himalayan-Tibetan complex.Much information about these chang...The geomorphic evolution of northwestern China during the Cenozoic has been a subject of much geological interest because of its link with the uplift of the Himalayan-Tibetan complex.Much information about these changes is recoverable from the sedimentary sequences of the region.We report here on the thick eolian deposits mantling the Huajialing Mountains,a relatively flat mountain range in the western Loess Plateau.Correlation of magnetic susceptibility stratigraphy with the QA-I Miocene eolian sequence dates a 134.7 m section(NL-VII) for the interval from 18.7 to 11.8 Ma,as confirmed by micro-mammalian fossils.These eolian deposits demonstrate a much wider distribution of the Miocene eolian deposits,and also indicate that the topography contrasts in the western Loess Plateau,including the uplifts of the Huajialing Mountains and the bedrock highlands in the Qinan region,were formed by the early Miocene.The near-continuous Miocene eolian sequence from 18.7 to 11.8 Ma indicates that the substratum of Huajialing had not experienced any intense tectonic changes during this time interval,which suggests further,the relative tectonic stability of the nearby Tibetan Plateau.展开更多
文摘The data on the hillslope and channelized debris flows in the Shitou area of central Taiwan occurred during Typhoons Toraji and Nali in 2001 were applied in this paper. The geomorphic parameters, including the flow length, gully gradient, drainage area and form factor of the debris flows were determined by spatial analysis using a Geographic Information System (GIS) based on the data derived from field investigation, aerial photographs, and topographical maps. According to such determined geomorphic parameters, the threshold conditions and empirical equations, such as the relationship between the gully gradient and drainage area and that between gully length and drainage area and topographic parameter, are presented and used to distinguish the geomorphic characteristics between the channelized and hillslope debris flows.
基金funded by National Key Technology Research and Development Program of the Ministry of Science and Technology of China(Grant No.2012BAC23B01)National Natural Science Foundation of China(Grant Nos.41271098,41171066)China Special Fund for Meteorological Research in the Public Interest(GYHY201206026)
文摘Forest canopy reduces shortwave radiation and increases the incoming longwave radiation to snowpacks beneath forest canopies. Furthermore, the effect of forest canopy may be changed by complex topography. In this paper, we measured and simulated the incoming longwave radiation to snow beneath forest at different canopy openness in the west Tianshan Mountains, China(43°16'N, 84°24'E) during spring 2013. A sensitivity study was conducted to explore the way that terrain influenced the incoming longwave radiation to snow beneath forest canopies. In the simulation model, measurement datasets, including air temperature, incoming shortwave radiation above canopy, and longwave radiation enhanced by adjacent terrain, were applied to calculate the incoming longwave radiation to snow beneath forest canopy. The simulation results were consistent with the measurements on hourly scale and daily scale. The effect of longwave radiation enhanced by terrain was important than that of shortwave radiation above forest canopy with different openness except the 20% canopy openness. The longwave radiation enhanced due to adjacent terrain increases with the slope increase and temperature rise. When air temperature(or slope) is relatively low, thelongwave radiation enhanced by adjacent terrain is not sensitive to slope(or air temperature), but the sensitivity increases with the decrease of snow cover area on sunny slope. The effect of longwave radiation is especially sensitive when the snow cover on sunny slope melts completely. The effect of incoming shortwave radiation reflected by adjacent terrain on incoming longwave radiation to snow beneath forest canopies is more slight than that of the enhanced longwave radiation.
基金Doctorate Research Program of China University of Petroleum (No. Y020109)
文摘A field investigation on Quaternary glacial landforms in Laoshan Motmtain has discovered many glacial potholes, scouring grooves on top of granite ridges, and large boulders. These erosional landforms were formed by the meltwater from the overlying ice cap, suggesting that there was at least an ice cap covering Laoshan Mountain and the surrounding areas or even a continental ice sheet over the vast area of Shandong Province in the Late Pleistocene. The ice sheet was obstructed by the Laoshan Mountain, Dazhu Mountain and Xiaozhu Mountain in the coastal areas as it moved toward the Yellow Sea. The ice flows eroded the bedrock and carved the weak intersection of the fault systems in the NE and NW directions into a deep channel, which gradually formed a fjord in the area of the Jiaozhou Bay basin by 20.00 ka BE The seawater gradually invaded the fjord from the beginning of the Holocene (11.00 ka BP) and Jiaozhou Bay was eventually formed. Similar fjords are easily found along the east of China and they share a similar origin because of the Quaternary glaciation in the region.
基金supported by the National Natural Sciences Foundation of China(Grant Nos.40599421 and 90502002)
文摘A planation hypothesis is proposed to explain landform evolution of the Tibet Plateau. A denudation threshold (T), the maximum potential denudation rate for a certain type of rock, is introduced to explain the combined effects of lithology and tectonics on landform evolution. If the tectonic uplifting rate (U) is equal to or less than the threshold rate (U ≤ T), the tectonic uplifting and terrain denudation are in dynamic equilibrium, and landforms are in a steady state. The end product should be planation surfaces whether the original landforms are flat plains or deeply dissected mountains. If U 〉 T, uplift and denudation are not able to reach a dynamic equilibrium state. The plateau surface is mostly underlain by soft rocks, such as the Mesozoic epimetamorphic argillites and Tertiary sedimentary rocks, while the mountain ranges comprise hard rocks, such as granite, gneiss and limestone. In soft rock regions, hills are low with a relative relief of mostly less than 100 m and the slopes are gentle at a gradient of 〈200. In contrast, hills can maintain steep slopes in hard rock regions. The Tibet Plateau has been under an equilibrium condition between tectonic uplifting and denudation except for the mountain ranges. The plateau might have reached the present altitudes before the Quaternary.
基金supported by Program of International S&T Cooperation,the Ministry of Science and Technology of the People's Republic of China(Grant No.2011DFA20820)International Science&Technology Cooperation Program of China,MOST(Grant No.2011DFG93160)+1 种基金the Qinghai Science and Technology Department(Grant No.2009-J-806)Department of International Exchange&Cooperation of the Ministry of Education(Grant Nos.2009-1599,2010-1595)
文摘In this paper a geomorphic-centered system was proposed for classifying the wetlands on the Qinghai-Tibet Plateau in western China, where the flora comprises primarily grasses. Although the geomorphic properties (e.g., elevation and morphology) of wetlands form the primary criteria of classification, this system also takes hydrological processes into implicit consideration. It represents an improvement over the hydrogeomorphic perspective as the relative importance of the two components (wetness and landform) of wetlands is clearly differentiated. This geomorphic-centered perspective yields insights into the hydrogeomorphic dynamics of plateau wetlands while indicates their vulnerability to change and degradation indirectly. According to this geomorphic-centered perspective, all plateau wetlands fall into one of the seven types of alpine, piedmont, valley, terrace, floodplain, lacustrine, and riverine in three elevational categories of upland, midland, and lowland. Upland (alpine and piedmont) wetlands with the steepest topography are the most sensitive to change whereas midland (floodplain, terrace and valley) wetlands are less vulnerable to degradation owing to a high water reserve except terrace wetlands. They have a dry surface caused by infrequent hydrological replenishment owing to their higher elevation than the channel. Low lying (lacustrine and riverine) wetlands are the most resilient. The geomorphic-centered perspective developed in this paper provides a framework for improving recognition and management of wetlands on the Plateau. Resilient wetlands can be grazed more intensively without the risk of degradation. Fragile and vulnerable wetlands require careful managementto avoid degradation.
基金Under the auspices of National Natural Science Foundation of China(No.41101080,41171047)Natural Science Foundation of Shandong Province(No.ZR2014DQ028)
文摘Spatial variation of dissolved organic carbon(DOC) in soils of riparian wetlands and responses to hydro-geomorphologic changes in the Sanjiang Plain were analyzed through in situ collecting soil samples in the Naoli River and the Bielahong River. The results showed that the average contents of DOC for soil layer of 0–100 cm were 730.6 mg/kg, 250.9 mg/kg, 423.0 mg/kg and 333.1 mg/kg respectively from riverbed to river terrace along the transverse directions of the Naoli watershed. The content of the soil DOC was the highest in the riverbed, lower in the high floodplain and much lower in the river terrace, and it was the lowest in the low floodplain. The difference in the content and vertical distribution of DOC between the riverbed and the three riparian wetlands was significant, while it was not significant among the low floodplain, the high floodplain and the river terrace. The variability of soil DOC was related to the hydrological connectivity between different landscape position of the riparian wetlands and the adjacent stream. Extremely significant correlations were observed between DOC and total organic carbon(TOC), total iron(TFe), ferrous iron(Fe(II)) whose correlation coefficients were 0.819, –0.544 and –0.709 in riparian wetlands of the Naoli River. With the increase of wetland destruction, soil p H increased and soil DOC content changed. The correlation coefficients between soil DOC and TOC, TFe, Fe(II) also changed into 0.759, –0.686 and –0.575 respectively in the Bielahong River. Under the impact of drainage ditches, the correlations between soil DOC and TFe, Fe(II) were not obvious, while the soil p H was weakly alkaline and was negatively correlated with soil DOC in the previous high floodplain. It indicates that riparian hydro-geomorphology is the main factor that could well explain this spatial variability of soil DOC, and the agricultural environmental hydraulic works like ditching also must be considered.
基金Under the auspices of National Natural Science Foundation of China (No.50879033,41001116)Specialized Research Fund for the Doctoral Program of Higher Education (No.20090211110025)Fundamental Research Funds for the Central Universities (No.lzujbky-2010-221)
文摘The Badain Jaran Desert,located in the Alxa Plateau,Northwest China,features mega-dunes and a unique dune-lake alternation landscape.This paper presented the aeolian sediment structures of three representative dunes in the Badain Jaran Desert using ground-penetrating radar (GPR).We processed and analyzed the GPR data and investigated the feasibility of using integrated GPR and sedimentological data to reconstruct dunes structure,sedimentary environment and geomorphological evolution.The results show that the internal structures of star dune and transverse dune represent various stages of mega-dune evolution: the main deposition processes of mega-dune are similar to those of transverse dunes but have a more complicated mechanism of sand transport and deposition because of the superimposition of dunes;the upper section of the mega-dune has a structure similar to that of star dune,with vertical aggradations on top.Diffraction hyperbolae in the GPR profile indicates that the presence of ancient dunes characterized by calcareous cementation layers is involved in the maintenance of mega-dunes,and water levels,shown by continuous,sub-horizontal GPR reflections,are supposed to be closely related to mega-dunes and the interdune lakes.Outcrop of wet sand and horizontal stratifications on the GPR image indicate moisture potentials with different levels inside mega-dunes.The multiplex geomorphology in the Badain Jaran Desert is the result of global climatic undulation,the unique geographical location,the geological structural features,etc.
文摘SCENERY along the world's longest highspeed railway from Beijing,on the vast North China Plain,southward to Guangzhou,over the Yellow River and Yangtze River,changes in the space of a few hours,as does the sky from overcast to pure and fresh.Mount Danxia then comes into view through the shifting clouds,among the red sandstone landforms that are named after it.
基金supported by National Basic Research Program of China (Grant No. 2009CB219407)National Natural Science Foundation of China (Grant No. 40972077)
文摘The Quaternary continental slope of the Baiyun Sag in northern South China Sea is characterized by a complex topography and abundant gravity flow sedimentation.High-resolution 3-D seismic data in this area allow for a detailed study of the seismic geomorphology and deep-water gravity flow depositional process.The Quaternary continental slope in the northern South China Sea is an above-graded slope.An intraslope basin lies within the above-grade continental slope.Slump,erosion,and deposition processes tend to develop a gentle topography and consequently a graded slope.The upper continental slope,which is above the slope equilibrium profile,is dominated by erosion and slumping.Slides,slumps and erosional channels are developed within this continental slope.The intraslope basin is located below the slope equilibrium profile and is potential accommodation space where sediments transported by gravity flows could be deposited,forming lobe aprons.Under the influence of gravity flow supply,gravity flow duration,continental slope topography,equilibrium profile,and accommodation,a slump-erosional channel-lobe depositional system is developed in the Quaternary continental slope in the Baiyun Sag.The deep-water gravity flow depositional process and the distribution of gravity flow sediments are greatly influenced by the continental slope topography,while the continental slope topography at the same time is reshaped by deep-water gravity flow depositional process and its products.The study of the interplay between the continental slope and gravity flow is helpful in predicting the distribution of the deep-water gravity flow sediments and the variation of sediment quality.
基金supported by National Natural Science Foundation of China (Grant No. 40730104)Chinese Academy of Sciences (Grant Nos. KZCX2-YW-Q1-15 and KZCX2-YW-117)
文摘The geomorphic evolution of northwestern China during the Cenozoic has been a subject of much geological interest because of its link with the uplift of the Himalayan-Tibetan complex.Much information about these changes is recoverable from the sedimentary sequences of the region.We report here on the thick eolian deposits mantling the Huajialing Mountains,a relatively flat mountain range in the western Loess Plateau.Correlation of magnetic susceptibility stratigraphy with the QA-I Miocene eolian sequence dates a 134.7 m section(NL-VII) for the interval from 18.7 to 11.8 Ma,as confirmed by micro-mammalian fossils.These eolian deposits demonstrate a much wider distribution of the Miocene eolian deposits,and also indicate that the topography contrasts in the western Loess Plateau,including the uplifts of the Huajialing Mountains and the bedrock highlands in the Qinan region,were formed by the early Miocene.The near-continuous Miocene eolian sequence from 18.7 to 11.8 Ma indicates that the substratum of Huajialing had not experienced any intense tectonic changes during this time interval,which suggests further,the relative tectonic stability of the nearby Tibetan Plateau.