Many behavioral activities of the horseshoe crab Limulus are rhythmic, and most of these are produced in large part by central pattern generators within the CNS. The chain of opisthosomal (‘abdominal') ganglia con...Many behavioral activities of the horseshoe crab Limulus are rhythmic, and most of these are produced in large part by central pattern generators within the CNS. The chain of opisthosomal (‘abdominal') ganglia controls gill movements of ventilation and gill cleaning, and the prosomal ring of fused ganglia (brain and segmental ‘thoracic' ganglia) controls generation of feeding and locomotor movements of the legs. Both the opisthosomal CNS and the prosomal CNS can generate behaviorally ap- propriate patterns of motor output in isolation, without movements or sensory input. Preparations of the isolated opisthosomal CNS generate rhythmic output patterns of motor activity characterized as fictive ventilatory and gill cleaning rhythms. Moreover, CNS preparations also express longer-term patterns, such as intermittent ventilation or sequential bouts of ventilation and gill cleaning. Such longer-term patterns are commonly observed in intact animals. The isolated prosomal CNS does not spontaneously generate the activity patterns characteristic of walking, swimming, and feeding. However, perfusion of octopamine in the isolated prosomal CNS activates central pattern generators underlying rhythmic chewing movements, and injection of octopamine into in- tact Limulus promotes the chewing pattern of feeding, whether or not food is presented. Our understanding of the ability of neu-romodulators such as octopamine to elicit or alter central motor programs may help to clarify the central neural circuits of pattern generation that oroduce and coordinate these rhythmic behaviors展开更多
The current study was designed to investigate the mechanisms by which ropivacaine may act within the central nervous system (CNS) to produce cardiotoxicity. Eighty New Zealand rabbits were divided into four groups r...The current study was designed to investigate the mechanisms by which ropivacaine may act within the central nervous system (CNS) to produce cardiotoxicity. Eighty New Zealand rabbits were divided into four groups randomly. In Group 1,20 rabbits received intracerebroventricular (icv) saline, and then received icv ropivacaine 30 min later. In Group 2, 20 rabbits received icv ropivacaine. Whenever dysrhythmias continued for more than 5 min, 0.1 ml saline was administered into the left cerebral ventricle. Ten minutes later, 0.1 ml midazolam was given into the left lateral ventricle. In Group 3, 20 rabbits received icv ropivacaine, and once the dysrhythmias developed, the inspired isoflurane concentration was increased from 0.75% to 1.50%. In Group 4, 20 animals received an intravenous (iv) phenylephrine infusion until dysrhythmias occurred. In Group 1, the rabbits did not develop dysrhythmias in response to icv saline, whereas dysrhythmias did develop in these animals after icv ropivacaine. In Group 2, icv saline had no effect on the dysrhythmias; however, icv midazolam terminated cardiac dysrhythmias. In Group 3, an increase in the concentration of the inspired isoflurane had no effect on dysrhythmias. In Group 4, icv midazolam had no effect on dysrhythmias in response to iv phenylephdne. Ropivacaine administered directly into the CNS is capable of producing cardiac dysrhythmias; midazolam terminated dysrhythmias presumably by potentiation of y-aminobutyric acid (GABA) receptor activity. Our results suggest that ropivacaine produces some of its cardiotoxicity not only by the direct cardiotoxicity of the drug, but also by the CNS effects of ropivacaine.展开更多
An association between assisted reproductive technology (ART) and neurobehavioral imprinting disorders has been reported in many studies, and it seems that ART may interfere with imprint reprogramming. However, it h...An association between assisted reproductive technology (ART) and neurobehavioral imprinting disorders has been reported in many studies, and it seems that ART may interfere with imprint reprogramming. However, it has never been explored whether epigenetic erros or imprinting disease susceptibility induced by ART can be inherited transgenerationally. Hence, the aim of this study was to determine the effect of in vitro fertilization and embryo transfer (IVF-ET) on transgenerational inheritance in am inbred mouse model. Mice derived from IVF-ET were outcrossed to wild-type C57BL/6J to obtain their female and male line F2 and F3 generations. Their behavior, morphology, histology, and DNA methylation status at several important differentially methylated regions (DMRs) were analyzed by Morris water maze, hematoxylin and eosin (H&E) staining, and bisulfite genomic sequencing. No significant differences in spatial learning or phenotypic abnormality were found in adults derived from IVF (F1) and female and male line F2 and F3 generations. A borderline trend of hypomethylation was found in H19 DMR CpG island 3 in the female line-derived F3 generation (0.40±0.118, P=0.086). Methylation status in H19/Igf2 DMR island 1, Igf2 DMR, KvDMR, and Snrpn DMR displayed normal patterns. Methylation percentage did not differ significantly from that of adults conceived naturally, and the expression of the genes they regulated was not disturbed. Transgenerational integrity, such as behavior, morphology, histology, and DNA methylation status, was maintained in these generations, which indicates that exposure of female germ cells to hormonel stimulation and gamete manipulation might not affect the individuals and their descendents.展开更多
The primary reason for the failure of traditional medicine in treating the disorders of the central nervous system(CNS) is the obstruction to traverse the blood-brain barrier(BBB). Due to the unique physiochemical pro...The primary reason for the failure of traditional medicine in treating the disorders of the central nervous system(CNS) is the obstruction to traverse the blood-brain barrier(BBB). Due to the unique physiochemical properties of nanoparticles, they can preferably help deliver drugs passing through the BBB. Researchers have been investigating the capacity of multifunctional nanomaterials as theranostical agents. However, some of the studies have reported controversial results, which might be due to different schematic designs, including size, surface charge, and shape. This review summarizes the applications of nanoparticles to overcome the BBB or contribute to improving the diagnostic and therapeutic effects in CNS diseases.展开更多
基金the U.S. Public Health Service for research grant funding for much of the work in my laboratory
文摘Many behavioral activities of the horseshoe crab Limulus are rhythmic, and most of these are produced in large part by central pattern generators within the CNS. The chain of opisthosomal (‘abdominal') ganglia controls gill movements of ventilation and gill cleaning, and the prosomal ring of fused ganglia (brain and segmental ‘thoracic' ganglia) controls generation of feeding and locomotor movements of the legs. Both the opisthosomal CNS and the prosomal CNS can generate behaviorally ap- propriate patterns of motor output in isolation, without movements or sensory input. Preparations of the isolated opisthosomal CNS generate rhythmic output patterns of motor activity characterized as fictive ventilatory and gill cleaning rhythms. Moreover, CNS preparations also express longer-term patterns, such as intermittent ventilation or sequential bouts of ventilation and gill cleaning. Such longer-term patterns are commonly observed in intact animals. The isolated prosomal CNS does not spontaneously generate the activity patterns characteristic of walking, swimming, and feeding. However, perfusion of octopamine in the isolated prosomal CNS activates central pattern generators underlying rhythmic chewing movements, and injection of octopamine into in- tact Limulus promotes the chewing pattern of feeding, whether or not food is presented. Our understanding of the ability of neu-romodulators such as octopamine to elicit or alter central motor programs may help to clarify the central neural circuits of pattern generation that oroduce and coordinate these rhythmic behaviors
基金Project (No. 2006K13-G7-4) supported by the Key Sci-Tech Research Project of Shaanxi Province,China
文摘The current study was designed to investigate the mechanisms by which ropivacaine may act within the central nervous system (CNS) to produce cardiotoxicity. Eighty New Zealand rabbits were divided into four groups randomly. In Group 1,20 rabbits received intracerebroventricular (icv) saline, and then received icv ropivacaine 30 min later. In Group 2, 20 rabbits received icv ropivacaine. Whenever dysrhythmias continued for more than 5 min, 0.1 ml saline was administered into the left cerebral ventricle. Ten minutes later, 0.1 ml midazolam was given into the left lateral ventricle. In Group 3, 20 rabbits received icv ropivacaine, and once the dysrhythmias developed, the inspired isoflurane concentration was increased from 0.75% to 1.50%. In Group 4, 20 animals received an intravenous (iv) phenylephrine infusion until dysrhythmias occurred. In Group 1, the rabbits did not develop dysrhythmias in response to icv saline, whereas dysrhythmias did develop in these animals after icv ropivacaine. In Group 2, icv saline had no effect on the dysrhythmias; however, icv midazolam terminated cardiac dysrhythmias. In Group 3, an increase in the concentration of the inspired isoflurane had no effect on dysrhythmias. In Group 4, icv midazolam had no effect on dysrhythmias in response to iv phenylephdne. Ropivacaine administered directly into the CNS is capable of producing cardiac dysrhythmias; midazolam terminated dysrhythmias presumably by potentiation of y-aminobutyric acid (GABA) receptor activity. Our results suggest that ropivacaine produces some of its cardiotoxicity not only by the direct cardiotoxicity of the drug, but also by the CNS effects of ropivacaine.
基金supported by the National Basic Research Program (973) of China (No. 2007CB948104)the National Natural Science Foundation of China (No. 81070532)the Zhejiang Provincial Natural Science Foundation of China (No. Z207021)
文摘An association between assisted reproductive technology (ART) and neurobehavioral imprinting disorders has been reported in many studies, and it seems that ART may interfere with imprint reprogramming. However, it has never been explored whether epigenetic erros or imprinting disease susceptibility induced by ART can be inherited transgenerationally. Hence, the aim of this study was to determine the effect of in vitro fertilization and embryo transfer (IVF-ET) on transgenerational inheritance in am inbred mouse model. Mice derived from IVF-ET were outcrossed to wild-type C57BL/6J to obtain their female and male line F2 and F3 generations. Their behavior, morphology, histology, and DNA methylation status at several important differentially methylated regions (DMRs) were analyzed by Morris water maze, hematoxylin and eosin (H&E) staining, and bisulfite genomic sequencing. No significant differences in spatial learning or phenotypic abnormality were found in adults derived from IVF (F1) and female and male line F2 and F3 generations. A borderline trend of hypomethylation was found in H19 DMR CpG island 3 in the female line-derived F3 generation (0.40±0.118, P=0.086). Methylation status in H19/Igf2 DMR island 1, Igf2 DMR, KvDMR, and Snrpn DMR displayed normal patterns. Methylation percentage did not differ significantly from that of adults conceived naturally, and the expression of the genes they regulated was not disturbed. Transgenerational integrity, such as behavior, morphology, histology, and DNA methylation status, was maintained in these generations, which indicates that exposure of female germ cells to hormonel stimulation and gamete manipulation might not affect the individuals and their descendents.
基金supported by the National Natural Science Foundation of China (31771031 and 81701829)
文摘The primary reason for the failure of traditional medicine in treating the disorders of the central nervous system(CNS) is the obstruction to traverse the blood-brain barrier(BBB). Due to the unique physiochemical properties of nanoparticles, they can preferably help deliver drugs passing through the BBB. Researchers have been investigating the capacity of multifunctional nanomaterials as theranostical agents. However, some of the studies have reported controversial results, which might be due to different schematic designs, including size, surface charge, and shape. This review summarizes the applications of nanoparticles to overcome the BBB or contribute to improving the diagnostic and therapeutic effects in CNS diseases.