With the construction of the new Radioactive Ion Beam Line in Lanzhou (RIBLL Ⅱ) which connecting the CSRm and the CSRe, an experimental setup.The Time-of-Flight (ToF) technique was recognized as one of the best ways ...With the construction of the new Radioactive Ion Beam Line in Lanzhou (RIBLL Ⅱ) which connecting the CSRm and the CSRe, an experimental setup.The Time-of-Flight (ToF) technique was recognized as one of the best ways for neutron detection and it, is employed by the neutrons wall. Considering the high neutron multiplicity, the detector shouldal so have the ability to resolve the multiple hits. Moreover, a high detection efficiency for the neutrons with energies ranging from 100MeV to 1 GeV is also required besides the high granularity. In this case, the sampling hadronic calorimeter type of detector has been selected. In order to estimate the performance of the detector展开更多
After the success of the Daya Bay experiment, the Jiangmen Underground Neutrino Observatory (JUNO) was launched to measure neutrino-mass hierarchy and oscillation parameters and to study other neutrino physics. Its ...After the success of the Daya Bay experiment, the Jiangmen Underground Neutrino Observatory (JUNO) was launched to measure neutrino-mass hierarchy and oscillation parameters and to study other neutrino physics. Its central detector is set for antineutrinos from reactors, the Earth, the atmosphere, and the Sun. The main requirements of the central detector are con- tainment of 20 kt of liquid scintillator, as the target mass, and 3% energy resolution. It is about a ball-shape detector of 38.5 m with -75% coverage of PMT on its inner surface. The design of such a huge detector is a big challenge because it must meet the requirements for several different types of physics measurement and possess the feasibility and reliability in its structure and engineering, all at reasonable time and cost. One option for the JUNO central detector is a hyper-scale acrylic ball sub- merged in the water to shield the background. This paper proposes a structural scheme for such an acrylic ball that is supported by a stainless-steel truss, inspired by point-supported glass-curtain walls in civil engineering. The preliminary design of the scheme is completed and verified by finite element (FE) method using ABAQUS. FE analysis shows that the scheme can con- trol the stress level of the acrylic ball within the limit of 5 to 10 MPa, in accordance with the demand of the design objective of the central detector. The scheme is of outstanding global stability and allows various chocces on local connections. We prove that the scheme is of good feasibility and should be a reasonable option for the central detector.展开更多
文摘With the construction of the new Radioactive Ion Beam Line in Lanzhou (RIBLL Ⅱ) which connecting the CSRm and the CSRe, an experimental setup.The Time-of-Flight (ToF) technique was recognized as one of the best ways for neutron detection and it, is employed by the neutrons wall. Considering the high neutron multiplicity, the detector shouldal so have the ability to resolve the multiple hits. Moreover, a high detection efficiency for the neutrons with energies ranging from 100MeV to 1 GeV is also required besides the high granularity. In this case, the sampling hadronic calorimeter type of detector has been selected. In order to estimate the performance of the detector
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA10010200)the Tsinghua University Initiative Scientific Research Program(Grant No.20131089288)
文摘After the success of the Daya Bay experiment, the Jiangmen Underground Neutrino Observatory (JUNO) was launched to measure neutrino-mass hierarchy and oscillation parameters and to study other neutrino physics. Its central detector is set for antineutrinos from reactors, the Earth, the atmosphere, and the Sun. The main requirements of the central detector are con- tainment of 20 kt of liquid scintillator, as the target mass, and 3% energy resolution. It is about a ball-shape detector of 38.5 m with -75% coverage of PMT on its inner surface. The design of such a huge detector is a big challenge because it must meet the requirements for several different types of physics measurement and possess the feasibility and reliability in its structure and engineering, all at reasonable time and cost. One option for the JUNO central detector is a hyper-scale acrylic ball sub- merged in the water to shield the background. This paper proposes a structural scheme for such an acrylic ball that is supported by a stainless-steel truss, inspired by point-supported glass-curtain walls in civil engineering. The preliminary design of the scheme is completed and verified by finite element (FE) method using ABAQUS. FE analysis shows that the scheme can con- trol the stress level of the acrylic ball within the limit of 5 to 10 MPa, in accordance with the demand of the design objective of the central detector. The scheme is of outstanding global stability and allows various chocces on local connections. We prove that the scheme is of good feasibility and should be a reasonable option for the central detector.