Calculation of moderator analogues for 14 MeV neutrons as source were made at a IBM/PC AT computer using TAMAKER-ANISN program and 46 groups (25 neutron groups, 21 photon groups) UW cross section data. The intensifyin...Calculation of moderator analogues for 14 MeV neutrons as source were made at a IBM/PC AT computer using TAMAKER-ANISN program and 46 groups (25 neutron groups, 21 photon groups) UW cross section data. The intensifying effect of lead and natural uranium for moderating 14 MeV neutrons is confirmed. Adopting proper structure of the moderator, the intensifying factor M (times) may be larger than 3. Using lead and natural uranium in sub-critical assemblies (or call boosters),with 14 MeV neutrons as source, with the same dimension as that of above, the intensifying effect is also condrmed. With a proper structure of sub-critical assembly,the intensifying factor M may be close to or eved larger than (1 - k)-1 where k isthe effective multiplication factor.展开更多
Recently, Sandia Laboratories developed a neutron scatter camera to detect special nuclear materials. This camera exhibits the following advantages: high efficiency, direction discrimination, neutron-gamma discriminat...Recently, Sandia Laboratories developed a neutron scatter camera to detect special nuclear materials. This camera exhibits the following advantages: high efficiency, direction discrimination, neutron-gamma discrimination ability, and wide field of view. However, using the direct projection method, the angular resolution of this camera is limited by uncertainties in the energies estimated from pulse height and time of flight measurements. In this study, we established an eight-element neutron scatter camera and conducted the experiment with a ^(252)Cf neutron source. The results show that it has an angular resolution better than 8°(1s) and a detection efficiency of approximately 2.6′10-4. Using maximum likelihood expectation maximization method, the image artifact was eliminated, and the angular resolution was improved. We proposed an average scattering angle method to estimate the scattering energy of neutrons and Compton gamma rays. As such, we can obtain a recognizable image and energy spectrum of the source with some degradation of energy and image resolutions. Finally, a newly measured light response function based on the MPD^(-4) device was used for image reconstruction. Although we did not obtain a better result than that of the standard light response function, we have observed the effects of light response function on image reconstruction.展开更多
文摘Calculation of moderator analogues for 14 MeV neutrons as source were made at a IBM/PC AT computer using TAMAKER-ANISN program and 46 groups (25 neutron groups, 21 photon groups) UW cross section data. The intensifying effect of lead and natural uranium for moderating 14 MeV neutrons is confirmed. Adopting proper structure of the moderator, the intensifying factor M (times) may be larger than 3. Using lead and natural uranium in sub-critical assemblies (or call boosters),with 14 MeV neutrons as source, with the same dimension as that of above, the intensifying effect is also condrmed. With a proper structure of sub-critical assembly,the intensifying factor M may be close to or eved larger than (1 - k)-1 where k isthe effective multiplication factor.
基金supported by the National Natural Science Fundation of China(Grant Nos.1110510611375144&11275153)
文摘Recently, Sandia Laboratories developed a neutron scatter camera to detect special nuclear materials. This camera exhibits the following advantages: high efficiency, direction discrimination, neutron-gamma discrimination ability, and wide field of view. However, using the direct projection method, the angular resolution of this camera is limited by uncertainties in the energies estimated from pulse height and time of flight measurements. In this study, we established an eight-element neutron scatter camera and conducted the experiment with a ^(252)Cf neutron source. The results show that it has an angular resolution better than 8°(1s) and a detection efficiency of approximately 2.6′10-4. Using maximum likelihood expectation maximization method, the image artifact was eliminated, and the angular resolution was improved. We proposed an average scattering angle method to estimate the scattering energy of neutrons and Compton gamma rays. As such, we can obtain a recognizable image and energy spectrum of the source with some degradation of energy and image resolutions. Finally, a newly measured light response function based on the MPD^(-4) device was used for image reconstruction. Although we did not obtain a better result than that of the standard light response function, we have observed the effects of light response function on image reconstruction.