A transformation of naphthalene-based coalescenced mesophase pitch(NMP)to mesophase microbeads was achieved by heating a mixture of NMP and fullerene(C_(60)).This is different from the conventional process of the liqu...A transformation of naphthalene-based coalescenced mesophase pitch(NMP)to mesophase microbeads was achieved by heating a mixture of NMP and fullerene(C_(60)).This is different from the conventional process of the liquid-phase carbonization of isotropic pitch to the emergence of carbon microbeads in the matrix and finally their growth to form a 100%anisotropic bulk meso-phase,but rather a reverse transformation.The effects of C_(60) loading and reaction temperature on the morphological transformation of mesophase were investigated by polarizing optical and scanning electron microscopies.The physical changes in the NMP induced by C_(60) were characterized by thermogravimetric analysis,Fourier transform infrared spectroscopy,X-ray diffractometry and Raman spectroscopy.The results show that the coalesced NMP can be converted to a spherical type at 300-320℃ with the addition of 5%C_(60),and the size of the mesophase microbeads increases with increasing temperature.Furthermore,a model is established to ex-plain the unique induction effect of C_(60) in the transformation process.This work makes the morphological transformation of MP con-trollable,and provides a new idea for the understanding and research of mesophase pitch.展开更多
This paper described new development of the neutron induced prompt gamma-ray analysis(NIPGA) technology in 1988-2003.The pulse fast-thermal neutron activation analysis method,which utilized the inelastic reaction and ...This paper described new development of the neutron induced prompt gamma-ray analysis(NIPGA) technology in 1988-2003.The pulse fast-thermal neutron activation analysis method,which utilized the inelastic reaction and capture reaction jointly,was employed to measure the elemental contents more efficiently.Lifetime of the neutron generator was more than 10000h and the performance of detector and MCA reached a high level.At the same time,Monte Carlo library least-square method was used to solve the nonlinearity problem in the NIPGA.展开更多
In this work,the microstructure and optical properties of the Mo/Si multilayers mirror for the space extreme-ultraviolet solar telescope before and after 100 keV proton irradiation have been investigated.EUV/soft X-ra...In this work,the microstructure and optical properties of the Mo/Si multilayers mirror for the space extreme-ultraviolet solar telescope before and after 100 keV proton irradiation have been investigated.EUV/soft X-ray reflectometer(EXRR) results showed that,after proton irradiation,the reflectivity of the Mo/Si multilayer decreased from 12.20% to 8.34% and the center wavelength revealed red shift of 0.38 nm,as compared with those before proton irradiation.High-resolution transmission electron microscopy(HRTEM) observations revealed the presence of MoSi 2,Mo 3 Si and Mo 5 Si 3 in Mo-on-Si interlayers before irradiation.The preferred orientation such as MoSi 2 with(101) texture and Mo 5 Si 3 with(310) texture was formed in Mo-on-Si interlayers after proton irradiation,which led to the increase of thickness in the interlayers.It is suggested that the changes of microstructures in Mo/Si multilayers under proton irradiation could cause optical properties degradation.展开更多
文摘A transformation of naphthalene-based coalescenced mesophase pitch(NMP)to mesophase microbeads was achieved by heating a mixture of NMP and fullerene(C_(60)).This is different from the conventional process of the liquid-phase carbonization of isotropic pitch to the emergence of carbon microbeads in the matrix and finally their growth to form a 100%anisotropic bulk meso-phase,but rather a reverse transformation.The effects of C_(60) loading and reaction temperature on the morphological transformation of mesophase were investigated by polarizing optical and scanning electron microscopies.The physical changes in the NMP induced by C_(60) were characterized by thermogravimetric analysis,Fourier transform infrared spectroscopy,X-ray diffractometry and Raman spectroscopy.The results show that the coalesced NMP can be converted to a spherical type at 300-320℃ with the addition of 5%C_(60),and the size of the mesophase microbeads increases with increasing temperature.Furthermore,a model is established to ex-plain the unique induction effect of C_(60) in the transformation process.This work makes the morphological transformation of MP con-trollable,and provides a new idea for the understanding and research of mesophase pitch.
基金Supported by Science Foundation for Young Teachers Normal University
文摘This paper described new development of the neutron induced prompt gamma-ray analysis(NIPGA) technology in 1988-2003.The pulse fast-thermal neutron activation analysis method,which utilized the inelastic reaction and capture reaction jointly,was employed to measure the elemental contents more efficiently.Lifetime of the neutron generator was more than 10000h and the performance of detector and MCA reached a high level.At the same time,Monte Carlo library least-square method was used to solve the nonlinearity problem in the NIPGA.
基金supported by the National Natural Science Foundation of China (Grant No. 50671042)the Open Project of State Key Laboratory of Applied Optics (Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences) (Grant No. 201004)the Ph.D.Innovation Programs Foundation of Jiangsu Province (Grant No.CXZZ12_0671)
文摘In this work,the microstructure and optical properties of the Mo/Si multilayers mirror for the space extreme-ultraviolet solar telescope before and after 100 keV proton irradiation have been investigated.EUV/soft X-ray reflectometer(EXRR) results showed that,after proton irradiation,the reflectivity of the Mo/Si multilayer decreased from 12.20% to 8.34% and the center wavelength revealed red shift of 0.38 nm,as compared with those before proton irradiation.High-resolution transmission electron microscopy(HRTEM) observations revealed the presence of MoSi 2,Mo 3 Si and Mo 5 Si 3 in Mo-on-Si interlayers before irradiation.The preferred orientation such as MoSi 2 with(101) texture and Mo 5 Si 3 with(310) texture was formed in Mo-on-Si interlayers after proton irradiation,which led to the increase of thickness in the interlayers.It is suggested that the changes of microstructures in Mo/Si multilayers under proton irradiation could cause optical properties degradation.