Wudu County in northwestern China frequently experiences large-scale landslide events. High-magnitude earthquakes and heavy rainfall events are the major triggering factors in the region. The aim of this research is t...Wudu County in northwestern China frequently experiences large-scale landslide events. High-magnitude earthquakes and heavy rainfall events are the major triggering factors in the region. The aim of this research is to compare and combine landslide suseeptibility assessments of rainfall- triggered and earthquake-triggered landslide events in the study area using Geographical Information System (GIS) and a logistic regression model. Two separate susceptibility maps were produeed using inventories reflecting single landslide-triggering events, i.e., earthquakes and heavy rain storms. Two groups of landslides were utilized: one group eontaining all landslides triggered by extreme rainfall events between 1995 and 2003 and the other group containing slope failures caused by the 2008 Wenchuan earthquake. Subsequently, the individual maps were combined to illustrate the loeations of maximum landslide probability. The use of the resulting three landslide susceptibility maps for landslide forecasting, spatial planning and for developing emergency response actions are discussed. The eombined susceptibility map illustrates the total landslide susceptibility in the study area.展开更多
Major elements and carbon isotopes of dissolved inorganic carbon(DIC)have been measured in the waters of Changbaishan mountain,a volcanic area in northeastern China,between June and September 2016 to decipher the orig...Major elements and carbon isotopes of dissolved inorganic carbon(DIC)have been measured in the waters of Changbaishan mountain,a volcanic area in northeastern China,between June and September 2016 to decipher the origin of the CO_2 involved in chemical weathering reactions.Spatial variations of major elements ratios measured in water samples can be explained by a change of the chemical composition of the volcanic rocks between the volcanic cone(trachytes)and the basaltic shield as evidenced by the variations in the composition of these rocks.Hence,DIC results from the neutralization of CO_2 by silicate rocks.DIC concentrations vary from 0.3 to 2.5 mmol/L and carbon isotopic compositions of DIC measured in rivers vary from-14.2‰to 3.5‰.At a first order,the DIC transported by rivers is derived from the chemical weathering’s consumption of CO_2 with a magmatic origin,enriched in^(13)C(-5%)and biogenic soil CO_2 with lower isotopic compositions.The highest δ^(13)C values likely result from C isotopes fractionation during CO_2 degassing in rivers.A mass balance based on carbon isotopes suggest that the contribution of magmatic CO_2 varied from less than 20%to more than 70%.Uncertainties in this calculation associated with CO_2 degassing in rivers are difficult to quantify,and the consequence of CO_2 degassing would be an overestimation of the contribution of DIC derived from the neutralization of magmatic CO_2 by silicate rocks.展开更多
In this study, two different methods including Digital Camera and Reference Panel (DCRP) and traditional in situ fPAR observation for measuring the in situ point fPAR of very short alpine grass vegetation were compa...In this study, two different methods including Digital Camera and Reference Panel (DCRP) and traditional in situ fPAR observation for measuring the in situ point fPAR of very short alpine grass vegetation were compared, and the Moderate Resolution Imaging Spectroradiometer (MODIS) fPAR products were evaluated and validated by in situ point data on the alpine grassland over the Northern Tibetan Plateau, which is sensitive to climate change and vulnerable to anthropogenic activities. Results showed that the MODIS alpine grassland fPAR product, examined by using DCRP, and traditional in situ fPAR observation had a significant relationship at the spatial and temporal scales. The decadal MODIS fPAR trend analysis showed that, average growing season fPAR increased by 1.2 × 10^-4 per year and in total increased 0.86% from 2002 to 2011 in alpine grassland, when most of the fPAR increments occurred in southeast and center of the Northern Tibetan Plateau, the alpine grassland tended to recover from degradation slightly. However, climatic factors have influenced the various alpine grassland vegetation fPAR over a period of 10 years; precipitation significantly affected the alpine meadow fPAR in the eastern region, whereas temperature considerably influenced the alpine desert steppe fPAR in the west region. These findings suggest that the regional heterogeneity in alpine grassland fPAR results from various environmental factors, except for vegetation characteristics, such as canopy structure and leaf area.展开更多
In recent years,many fossil vertebrates,including feathered dinosaurs,have been discovered at Nanshimenzi village,Gangou Town,Qinglong County,Hebei Province,China.A geological section including the fossil-bearing stra...In recent years,many fossil vertebrates,including feathered dinosaurs,have been discovered at Nanshimenzi village,Gangou Town,Qinglong County,Hebei Province,China.A geological section including the fossil-bearing strata was measured at Nanshimenzi,to determine the exact geological age and sedimentary characteristics of the section,and a new lithostratigraphic unit was named as the Nanshimenzi Bed.The Nanshimenzi Bed is about 56.6 m in thickness,mainly consisting of gray sandstones and siltstones and containing fossil vertebrates and several coal streaks.On the basis of survey and comparison,the Nanshimenzi Bed should be assigned to Tiaojishan Formation and probably to the upper part of the formation.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.40930531)the National Key Technology R & D Program (Grant No. 2011BAK12B06)+1 种基金the Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection of Chengdu University of Technology (SKLGP2012K012)the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the 51st Chinese PostDoc Science Foundation (Grant No. 2012M511298)
文摘Wudu County in northwestern China frequently experiences large-scale landslide events. High-magnitude earthquakes and heavy rainfall events are the major triggering factors in the region. The aim of this research is to compare and combine landslide suseeptibility assessments of rainfall- triggered and earthquake-triggered landslide events in the study area using Geographical Information System (GIS) and a logistic regression model. Two separate susceptibility maps were produeed using inventories reflecting single landslide-triggering events, i.e., earthquakes and heavy rain storms. Two groups of landslides were utilized: one group eontaining all landslides triggered by extreme rainfall events between 1995 and 2003 and the other group containing slope failures caused by the 2008 Wenchuan earthquake. Subsequently, the individual maps were combined to illustrate the loeations of maximum landslide probability. The use of the resulting three landslide susceptibility maps for landslide forecasting, spatial planning and for developing emergency response actions are discussed. The eombined susceptibility map illustrates the total landslide susceptibility in the study area.
基金supported by the National Natural Science Foundation of China through Grant No.41473023
文摘Major elements and carbon isotopes of dissolved inorganic carbon(DIC)have been measured in the waters of Changbaishan mountain,a volcanic area in northeastern China,between June and September 2016 to decipher the origin of the CO_2 involved in chemical weathering reactions.Spatial variations of major elements ratios measured in water samples can be explained by a change of the chemical composition of the volcanic rocks between the volcanic cone(trachytes)and the basaltic shield as evidenced by the variations in the composition of these rocks.Hence,DIC results from the neutralization of CO_2 by silicate rocks.DIC concentrations vary from 0.3 to 2.5 mmol/L and carbon isotopic compositions of DIC measured in rivers vary from-14.2‰to 3.5‰.At a first order,the DIC transported by rivers is derived from the chemical weathering’s consumption of CO_2 with a magmatic origin,enriched in^(13)C(-5%)and biogenic soil CO_2 with lower isotopic compositions.The highest δ^(13)C values likely result from C isotopes fractionation during CO_2 degassing in rivers.A mass balance based on carbon isotopes suggest that the contribution of magmatic CO_2 varied from less than 20%to more than 70%.Uncertainties in this calculation associated with CO_2 degassing in rivers are difficult to quantify,and the consequence of CO_2 degassing would be an overestimation of the contribution of DIC derived from the neutralization of magmatic CO_2 by silicate rocks.
文摘In this study, two different methods including Digital Camera and Reference Panel (DCRP) and traditional in situ fPAR observation for measuring the in situ point fPAR of very short alpine grass vegetation were compared, and the Moderate Resolution Imaging Spectroradiometer (MODIS) fPAR products were evaluated and validated by in situ point data on the alpine grassland over the Northern Tibetan Plateau, which is sensitive to climate change and vulnerable to anthropogenic activities. Results showed that the MODIS alpine grassland fPAR product, examined by using DCRP, and traditional in situ fPAR observation had a significant relationship at the spatial and temporal scales. The decadal MODIS fPAR trend analysis showed that, average growing season fPAR increased by 1.2 × 10^-4 per year and in total increased 0.86% from 2002 to 2011 in alpine grassland, when most of the fPAR increments occurred in southeast and center of the Northern Tibetan Plateau, the alpine grassland tended to recover from degradation slightly. However, climatic factors have influenced the various alpine grassland vegetation fPAR over a period of 10 years; precipitation significantly affected the alpine meadow fPAR in the eastern region, whereas temperature considerably influenced the alpine desert steppe fPAR in the west region. These findings suggest that the regional heterogeneity in alpine grassland fPAR results from various environmental factors, except for vegetation characteristics, such as canopy structure and leaf area.
基金Supported by projects of the National Natural Science Foundation of China(41172026,41688103)Education Bureau Foundation(LR2012038)of Liaoning Province
文摘In recent years,many fossil vertebrates,including feathered dinosaurs,have been discovered at Nanshimenzi village,Gangou Town,Qinglong County,Hebei Province,China.A geological section including the fossil-bearing strata was measured at Nanshimenzi,to determine the exact geological age and sedimentary characteristics of the section,and a new lithostratigraphic unit was named as the Nanshimenzi Bed.The Nanshimenzi Bed is about 56.6 m in thickness,mainly consisting of gray sandstones and siltstones and containing fossil vertebrates and several coal streaks.On the basis of survey and comparison,the Nanshimenzi Bed should be assigned to Tiaojishan Formation and probably to the upper part of the formation.