Based on shell model of nuclei, the influence of a high magnetic field on β^+ decay in the crusts of accreting neutron stars is analyzed. The magnetic field effect on 54 Mn is discussed. The results show that a weak...Based on shell model of nuclei, the influence of a high magnetic field on β^+ decay in the crusts of accreting neutron stars is analyzed. The magnetic field effect on 54 Mn is discussed. The results show that a weak magnetic field makes little effect on β^+ decay but a strong magnetic field (B 〉 10^11 G) improves β^+ decay rates obviously. The conclusion derived will benefit to develop further research on nuclear astrophysics in the future.展开更多
Properties and deformations of the rotating neutron stars in uniform strong magnetic field are calculated. The magnetic field will soften the equation of state of the neutron star matters and make an obvious effect on...Properties and deformations of the rotating neutron stars in uniform strong magnetic field are calculated. The magnetic field will soften the equation of state of the neutron star matters and make an obvious effect on the structure of the rotating neutron star. If the magnetic field is superstrong (B=10^17 T), the mass, radius, and the deformation will become smaller effectively.展开更多
The electron capture of Gamow--Teller transition on iron group nuclei is investigated in a strong magnetic. field at the crusts of neutron stars. The results show that the magnetic field has only a slight effect on th...The electron capture of Gamow--Teller transition on iron group nuclei is investigated in a strong magnetic. field at the crusts of neutron stars. The results show that the magnetic field has only a slight effect on the electron capture rates with the range of the magnetic fields (10^9 - 10^13 G) on surfaces of most neutron stars, whereas for some magnetars whose range of the magnetic field is 10^13 - 10^18 G, the electron capture rates of most iron group nuclei would be debased greatly and may be even decreased overrun 3 orders of magnitude by the strong magnetic field.展开更多
The China Seismo-Electromagnetic Satellite(CSES) is the first platform of China's earthquake observation system in space and the first satellite of China's geophysical field detection missions. The high precis...The China Seismo-Electromagnetic Satellite(CSES) is the first platform of China's earthquake observation system in space and the first satellite of China's geophysical field detection missions. The high precision magnetometer(HPM), which contains two fluxgate sensors and a coupled dark state magnetometer(CDSM), measures the vector of the Earth's magnetic field with a bandwidth from DC to 15 Hz. The two fluxgate sensors are in a gradiometer configuration in order to reduce satellite interferences. Additionally, the CDSM sensor measures the scalar value of the magnetic field with higher accuracy and stability.Several data processing and calibration methods have been prepared to get accurate vector magnetic field data. This includes the calibration of each of the three sensors, the absolute vector correction algorithm, the spacecraft magnetic interference elimination and the coordinate transformation method. Also the instrument performances based on ground calibration activities are shown in this article.展开更多
Magnetars are strong magnetized neutron stars which could emit quiescent X-ray, repeating burst of soft gamma ray, and even the giant flares. We investigate the effects of magnetic fields on the structure of isolated ...Magnetars are strong magnetized neutron stars which could emit quiescent X-ray, repeating burst of soft gamma ray, and even the giant flares. We investigate the effects of magnetic fields on the structure of isolated magnetars. The stellar structure together with the magnetic field configuration can be obtained at the same time within a self-consistent procedure. The magnetar mass and radius are found to be weakly enhanced by the strong magnetic fields. Unlike other previous investigations, the magnetic field is unable to violate the mass limit of the neutron stars.展开更多
基金The project supported by National Natural Science Foundation of China under Grant No. 10347008
文摘Based on shell model of nuclei, the influence of a high magnetic field on β^+ decay in the crusts of accreting neutron stars is analyzed. The magnetic field effect on 54 Mn is discussed. The results show that a weak magnetic field makes little effect on β^+ decay but a strong magnetic field (B 〉 10^11 G) improves β^+ decay rates obviously. The conclusion derived will benefit to develop further research on nuclear astrophysics in the future.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10647116 and 10575140 and the China Postdoctoral Science Foundation under Grant No. 2005037175
文摘Properties and deformations of the rotating neutron stars in uniform strong magnetic field are calculated. The magnetic field will soften the equation of state of the neutron star matters and make an obvious effect on the structure of the rotating neutron star. If the magnetic field is superstrong (B=10^17 T), the mass, radius, and the deformation will become smaller effectively.
基金The project supported by National Natural Science Foundation of China under Grant No.10778719the Scientific Research Fund of the Education Department of Sichuan Province under Grant No.2006A079the Science and Technological Foundation of China West Normal University
文摘The electron capture of Gamow--Teller transition on iron group nuclei is investigated in a strong magnetic. field at the crusts of neutron stars. The results show that the magnetic field has only a slight effect on the electron capture rates with the range of the magnetic fields (10^9 - 10^13 G) on surfaces of most neutron stars, whereas for some magnetars whose range of the magnetic field is 10^13 - 10^18 G, the electron capture rates of most iron group nuclei would be debased greatly and may be even decreased overrun 3 orders of magnitude by the strong magnetic field.
文摘The China Seismo-Electromagnetic Satellite(CSES) is the first platform of China's earthquake observation system in space and the first satellite of China's geophysical field detection missions. The high precision magnetometer(HPM), which contains two fluxgate sensors and a coupled dark state magnetometer(CDSM), measures the vector of the Earth's magnetic field with a bandwidth from DC to 15 Hz. The two fluxgate sensors are in a gradiometer configuration in order to reduce satellite interferences. Additionally, the CDSM sensor measures the scalar value of the magnetic field with higher accuracy and stability.Several data processing and calibration methods have been prepared to get accurate vector magnetic field data. This includes the calibration of each of the three sensors, the absolute vector correction algorithm, the spacecraft magnetic interference elimination and the coordinate transformation method. Also the instrument performances based on ground calibration activities are shown in this article.
基金supported by the National Natural Science Foundation of China(Grant Nos.1140522311175219+4 种基金11275271 and 11435014)the National Program on Key Basic Research Project(Grant No.2013CB834405)the Knowledge Innovation Project of Chinese Academy of Sciences(Grant No.KJCX2-EW-N01)the Funds for Creative Research Groups of China(Grant No.11021504)the Youth Innovation Promotion Association of Chinese Academy of Sciences
文摘Magnetars are strong magnetized neutron stars which could emit quiescent X-ray, repeating burst of soft gamma ray, and even the giant flares. We investigate the effects of magnetic fields on the structure of isolated magnetars. The stellar structure together with the magnetic field configuration can be obtained at the same time within a self-consistent procedure. The magnetar mass and radius are found to be weakly enhanced by the strong magnetic fields. Unlike other previous investigations, the magnetic field is unable to violate the mass limit of the neutron stars.