The system energy of H atom occupying different positions in Cr2O3 crystal lattice is calculated by adopting the first-principles calculation method based on density functional theory in this paper. The results indica...The system energy of H atom occupying different positions in Cr2O3 crystal lattice is calculated by adopting the first-principles calculation method based on density functional theory in this paper. The results indicate that the most stable position of H atom in Cr2O3 crystal lattice locates at the bilateral positions of the center of the unoccupied O octahedral interstice. The reason resulting in this situation is analyzed by comparing the change of Cr2O3 lattice distortion and density of states in Cr2O3_H system when H atom locates at different positions in octahedral interstice. The diffusion activation energy of H atom is 0.73 eV,which is determined by seeking the diffusion path and transition state of H atom in Cr2O3 crystal lattice. The effective attempt frequency of H atom in Cr2O3 crystal lattice is also calculated by using molecular dynamics. Combining with diffusion activation energy data,the diffusion coefficient of H atom in Cr2O3 crystal is determined.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.50771104,50871122)
文摘The system energy of H atom occupying different positions in Cr2O3 crystal lattice is calculated by adopting the first-principles calculation method based on density functional theory in this paper. The results indicate that the most stable position of H atom in Cr2O3 crystal lattice locates at the bilateral positions of the center of the unoccupied O octahedral interstice. The reason resulting in this situation is analyzed by comparing the change of Cr2O3 lattice distortion and density of states in Cr2O3_H system when H atom locates at different positions in octahedral interstice. The diffusion activation energy of H atom is 0.73 eV,which is determined by seeking the diffusion path and transition state of H atom in Cr2O3 crystal lattice. The effective attempt frequency of H atom in Cr2O3 crystal lattice is also calculated by using molecular dynamics. Combining with diffusion activation energy data,the diffusion coefficient of H atom in Cr2O3 crystal is determined.