基于局部二值模式(LBP)算子在模式识别中直方图维数高、判别能力差、具有冗余信息等缺点,针对作物病害叶片图像的特点,提出一种自适应中心对称局部二值模式(Adaptive Center-Symmetric Local Binary Patterns,ACSLBP)算法,并应用于作物...基于局部二值模式(LBP)算子在模式识别中直方图维数高、判别能力差、具有冗余信息等缺点,针对作物病害叶片图像的特点,提出一种自适应中心对称局部二值模式(Adaptive Center-Symmetric Local Binary Patterns,ACSLBP)算法,并应用于作物病害识别。该算法能够得到光照和旋转不变性的纹理特征,利用模糊C均值聚类算法对病害叶片图像进行分割,再将分割后的病斑图像进行分块,然后采用自适应阈值提取每个子块的ACSLBP纹理直方图,结合作物病害叶片图像的颜色特征,利用最近邻分类器识别作物病害。在黄瓜4种常见病害叶片图像数据库上进行试验,平均识别率高达95%以上,表明该方法是有效可行的。展开更多
文摘基于局部二值模式(LBP)算子在模式识别中直方图维数高、判别能力差、具有冗余信息等缺点,针对作物病害叶片图像的特点,提出一种自适应中心对称局部二值模式(Adaptive Center-Symmetric Local Binary Patterns,ACSLBP)算法,并应用于作物病害识别。该算法能够得到光照和旋转不变性的纹理特征,利用模糊C均值聚类算法对病害叶片图像进行分割,再将分割后的病斑图像进行分块,然后采用自适应阈值提取每个子块的ACSLBP纹理直方图,结合作物病害叶片图像的颜色特征,利用最近邻分类器识别作物病害。在黄瓜4种常见病害叶片图像数据库上进行试验,平均识别率高达95%以上,表明该方法是有效可行的。