期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于注意力增强的中心差分自适应图卷积的骨架行为识别 被引量:2
1
作者 白杉 冯秀芳 《计算机工程与科学》 CSCD 北大核心 2023年第7期1263-1273,共11页
近年来,由于图卷积网络在骨架动作识别领域的卓越表现而吸引了许多研究人员的关注,但大多数的图卷积只能聚合节点信息,忽略了中心节点与相邻节点的特征之间的差异。提出了一种基于多感受野注意力机制的中心差分自适应图卷积网络模型MRFA... 近年来,由于图卷积网络在骨架动作识别领域的卓越表现而吸引了许多研究人员的关注,但大多数的图卷积只能聚合节点信息,忽略了中心节点与相邻节点的特征之间的差异。提出了一种基于多感受野注意力机制的中心差分自适应图卷积网络模型MRFAM-CDAGC,它不仅可以自适应地聚合中心节点的图拓扑中的关联节点的信息,而且可以合并相邻节点之间的局部运动信息,聚合中心节点的梯度特征。加入的多感受野的注意力模块,使该网络模型能聚焦更加具有判别力的关键关节和帧信息,从而提高行为识别网络模型的准确率。该网络模型在NTU-RGB-D数据集的2个基准测试上分别达到了89.1%和96.0%的准确率,在大规模的数据集Kinetics上具有通用性,验证了该网络模型在提取时空特征和捕捉全局上下文信息上的优越性。 展开更多
关键词 行为识别 中心差分自适应图卷积 注意力机制 骨架识别
下载PDF
面向去中心化双重差分隐私的谱图卷积神经网络 被引量:3
2
作者 刘峰 杨成意 +1 位作者 於欣澄 齐佳音 《信息网络安全》 CSCD 北大核心 2022年第2期39-46,共8页
图卷积神经网络是一种面向多任务且应用广泛的深度学习模型。文章研究了去中心化场景中谱域图卷积神经网络节点关系信息和节点特征信息的保护问题,提出双重差分隐私保护机制下的谱图卷积神经网络DDPSGCN。在给定隐私预算总额的条件下对... 图卷积神经网络是一种面向多任务且应用广泛的深度学习模型。文章研究了去中心化场景中谱域图卷积神经网络节点关系信息和节点特征信息的保护问题,提出双重差分隐私保护机制下的谱图卷积神经网络DDPSGCN。在给定隐私预算总额的条件下对拉普拉斯机制和高斯机制进行隐私预算分配,并通过隐私损失和Chernoff界理论进行参数估计。在两大分布噪声扰动作用基于不同图数据信息的隐私保护下,文章提出基于区块链去中心化差分隐私处理机制的图卷积神经网络训练算法。实验表明文章采用的去中心化双重差分隐私机制,能够在半监督节点分类任务准确率下降1%以内的前提下确保原始数据隐私不泄露,相较于单隐私保护机制有着更高的隐私保护效率和更强的对抗攻击鲁棒性。 展开更多
关键词 双重差分隐私 中心差分隐私 图卷神经网络模型 区块链
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部