期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于稠密子图的社区发现算法
被引量:
4
1
作者
郑文萍
张浩杰
王杰
《智能系统学报》
CSCD
北大核心
2016年第3期426-432,共7页
基于密度的图聚类算法在社区发现中得到了广泛应用,然而由于其通过搜索网络中局部稠密子图来识别社区,使得大量结点因不能构成稠密子图而未被聚类。针对此问题,给出了一种基于稠密子图的软聚类算法(community detection based dense sub...
基于密度的图聚类算法在社区发现中得到了广泛应用,然而由于其通过搜索网络中局部稠密子图来识别社区,使得大量结点因不能构成稠密子图而未被聚类。针对此问题,给出了一种基于稠密子图的软聚类算法(community detection based dense subgraphs,BDSG)。首先给出一种中心社区发现方法;进而定义了一种结点的社区归属度,并给出中心社区扩展策略;最终得到聚类结果。通过与CPM(clique percolation method)、k-dense算法在空手道俱乐部、海豚社交网络、大学生足球网络、电子邮件网络和合作网络等数据进行比较,表明BDSG算法在模块性指标与时间效率方面体现了良好性能,同时中心社区扩展策略能在一定程度上提高CPM、k-dense等基于密度算法的聚类有效性。
展开更多
关键词
复杂网络
社区发现
图聚类
软聚类
密度
中心扩展策略
点介数
模块性
下载PDF
职称材料
题名
基于稠密子图的社区发现算法
被引量:
4
1
作者
郑文萍
张浩杰
王杰
机构
山西大学计算机与信息技术学院
山西大学计算智能与中文信息处理教育部重点实验室
出处
《智能系统学报》
CSCD
北大核心
2016年第3期426-432,共7页
基金
国家自然科学基金项目(61572005
61272004)
山西省煤基重点科技攻关项目(MQ2014-09)
文摘
基于密度的图聚类算法在社区发现中得到了广泛应用,然而由于其通过搜索网络中局部稠密子图来识别社区,使得大量结点因不能构成稠密子图而未被聚类。针对此问题,给出了一种基于稠密子图的软聚类算法(community detection based dense subgraphs,BDSG)。首先给出一种中心社区发现方法;进而定义了一种结点的社区归属度,并给出中心社区扩展策略;最终得到聚类结果。通过与CPM(clique percolation method)、k-dense算法在空手道俱乐部、海豚社交网络、大学生足球网络、电子邮件网络和合作网络等数据进行比较,表明BDSG算法在模块性指标与时间效率方面体现了良好性能,同时中心社区扩展策略能在一定程度上提高CPM、k-dense等基于密度算法的聚类有效性。
关键词
复杂网络
社区发现
图聚类
软聚类
密度
中心扩展策略
点介数
模块性
Keywords
complex network
community detection
graph clustering
soft clustering
density
core extended strat-egy
vertex betweenness
modularity
分类号
TP311.13 [自动化与计算机技术—计算机软件与理论]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于稠密子图的社区发现算法
郑文萍
张浩杰
王杰
《智能系统学报》
CSCD
北大核心
2016
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部