-
题名耦合中心游移和双权重因子的鲸鱼算法及应用
被引量:6
- 1
-
-
作者
程浩淼
王梦磊
汪靓
章小卫
-
机构
扬州大学环境科学与工程学院
扬州大学水利科学与工程学院
扬州大学信息工程学院
-
出处
《计算机工程与应用》
CSCD
北大核心
2022年第13期74-84,共11页
-
基金
国家自然科学基金(42177365,52079119,51809226)。
-
文摘
针对鲸鱼优化算法(WOA)收敛精度低、收敛速度慢、易陷入局部优化等问题,提出耦合中心游移和双权重因子的鲸鱼算法(C-A-WWOA)。该算法采用中心游移和边界邻域更新策略,提高了种群质量、收敛精度和收敛速度;通过算法参数的非线性改进,平衡了算法的局部开发与全局搜索能力;还采用双权重因子对后期种群进行随机扰动,以避免算法后期陷入局部最优。通过18个测试函数的计算表明,相较于WOA和其他改进方案,C-A-WWOA在没有增加算法复杂度的基础上,提高了收敛精度和适用性。同时,不同改进策略下对算法性能的影响排序为:C-A-WWOA>W-WOA>C-WOA≈A-WOA>WOA;此外,改进算法在两个工程结构设计实例的应用中,也验证了其有效性和优越性。
-
关键词
改进鲸鱼优化算法
中心游移
边界邻域更新
双权重因子
工程优化
-
Keywords
improved whale optimization algorithm
center wander
boundary neighborhood updates
double weight factors
engineering optimization
-
分类号
TP18
[自动化与计算机技术—控制理论与控制工程]
-