期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于K类中心聚类法的川牛膝种子质量评价研究 被引量:1
1
作者 王倩 吴沂芸 +4 位作者 裴瑾 杨梅 王黎 刘维 陈翠平 《中药与临床》 2017年第1期7-10,共4页
目的:评价不同产地及生长年限的川牛膝(Cyathula officinalis Kuan)种子质量。方法:在测定种子千粒重、净度、含水量、发芽率、发芽势、生活力及活力的基础上,采用K类中心聚类法,以发芽率、千粒重及生活力为重要指标,对17批川牛膝种子... 目的:评价不同产地及生长年限的川牛膝(Cyathula officinalis Kuan)种子质量。方法:在测定种子千粒重、净度、含水量、发芽率、发芽势、生活力及活力的基础上,采用K类中心聚类法,以发芽率、千粒重及生活力为重要指标,对17批川牛膝种子质量进行了初步分级。结果:可将川牛膝种子质量初步划分为4个等级,有12批种子合格。结论:来自四川金口河区与四川天全两产区的种子质量较优,生长年限对川牛膝种子质量无明确影响。 展开更多
关键词 川牛膝种子 质量评价 K中心聚类法
下载PDF
经典划分聚类分析方法及算例
2
作者 郑庆涛 赵亚敏 《地壳构造与地壳应力文集》 2016年第2期157-165,共9页
聚类分析方法在大数据时代是数据挖掘(Date Mining)、科学研究和机器学习(Machine Learning)的基础性工具。本文在收集、整理已有研究成果的基础上,对K-均值和K-中心点这两种经典划分式聚类分析方法的原理、优缺点及适用范围进行了重点... 聚类分析方法在大数据时代是数据挖掘(Date Mining)、科学研究和机器学习(Machine Learning)的基础性工具。本文在收集、整理已有研究成果的基础上,对K-均值和K-中心点这两种经典划分式聚类分析方法的原理、优缺点及适用范围进行了重点阐述,并通过算例对比说明孤立点对两种经典算法的不同影响,对科研工作者更高效和便捷地寻求适用于自己研究领域的聚类分析方法、取得科学有效的研究成果具有重要意义。 展开更多
关键词 分析 划分 K-均值 K-中心
原文传递
基于相似性最优模块神经网络的股票预测 被引量:1
3
作者 刘军 邱晓红 +1 位作者 汪志勇 杨鹏 《江西师范大学学报(自然科学版)》 CAS 北大核心 2008年第4期443-448,共6页
该文提出一种最优模块化神经网络的模型.BP网络存在学习后面的样本而"遗忘"前面的样本,以及训练速度很慢的问题,但具有泛化能力强的优点,同时网络的结构不会随数据增加而变的庞大.而RBF网络随着输入维数增加其隐藏层的神经元... 该文提出一种最优模块化神经网络的模型.BP网络存在学习后面的样本而"遗忘"前面的样本,以及训练速度很慢的问题,但具有泛化能力强的优点,同时网络的结构不会随数据增加而变的庞大.而RBF网络随着输入维数增加其隐藏层的神经元个数呈指数增加,并且其泛化能力不强,但RBF网络具有训练速度比较快,逼近效果好等优点.于是提出最优模块化神经网络的模型,综合BP和RBF网络的优点.使学习样本能力,运算速度,网络规模得到改善.该模型适合于较多的样本训练. 展开更多
关键词 模块化神经网络 中心聚类法 费歇判别 股票预测
下载PDF
Incremental learning of the triangular membership functions based on single-pass FCM and CHC genetic model 被引量:1
4
作者 霍纬纲 Qu Feng Zhang Yuxiang 《High Technology Letters》 EI CAS 2017年第1期7-15,共9页
In order to improve the efficiency of learning the triangular membership functions( TMFs) for mining fuzzy association rule( FAR) in dynamic database,a single-pass fuzzy c means( SPFCM)algorithm is combined with the r... In order to improve the efficiency of learning the triangular membership functions( TMFs) for mining fuzzy association rule( FAR) in dynamic database,a single-pass fuzzy c means( SPFCM)algorithm is combined with the real-coded CHC genetic model to incrementally learn the TMFs. The cluster centers resulting from SPFCM are regarded as the midpoint of TMFs. The population of CHC is generated randomly according to the cluster center and constraint conditions among TMFs. Then a new population for incremental learning is composed of the excellent chromosomes stored in the first genetic process and the chromosomes generated based on the cluster center adjusted by SPFCM. The experiments on real datasets show that the number of generations converging to the solution of the proposed approach is less than that of the existing batch learning approach. The quality of TMFs generated by the approach is comparable to that of the batch learning approach. Compared with the existing incremental learning strategy,the proposed approach is superior in terms of the quality of TMFs and time cost. 展开更多
关键词 incremental learning triangular membership function TMFs) fuzzy associationrule (FAR) real-coded CHC
下载PDF
A KNN-based two-step fuzzy clustering weighted algorithm for WLAN indoor positioning 被引量:3
5
作者 Xu Yubin Sun Yongliang Ma Lin 《High Technology Letters》 EI CAS 2011年第3期223-229,共7页
Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to i... Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to improve it. Thus, a KNN-based two-step FCM weighted (KTFW) algorithm for indoor positioning in wireless local area networks (WLAN) is presented in this paper. In KTFW algorithm, k reference points (RPs) chosen by KNN are clustered through FCM based on received signal strength (RSS) and location coordinates. The right clusters are chosen according to rules, so three sets of RPs are formed including the set of k RPs chosen by KNN and are given different weights. RPs supposed to have better contribution to positioning accuracy are given larger weights to improve the positioning accuracy. Simulation results indicate that KTFW generally outperforms KNN and its complexity is greatly reduced through providing initial clustering centers for FCM. 展开更多
关键词 wireless local area networks (WLAN) indoor positioning k-nearest neighbors (KNN) fuzzy c-means (FCM) clustering center
下载PDF
医院单床效率的三维评价模型构建研究 被引量:1
6
作者 李梦斐 吴越 +6 位作者 姜桦 徐丛剑 武欣 苏毓 陆添骏 易曼莉 吴志勇 《中华医院管理杂志》 CSCD 北大核心 2020年第2期127-130,共4页
目的以某妇产科医院为例,研究单床效率评价模型及其应用,为医院床位管理提供参考和借鉴。方法通过访谈确定样本病区和关键指标,根据医院信息系统中的患者资料构建两级数据库。采用K中心聚类法,将床位按其年均空置天数(x)、年均周转次数... 目的以某妇产科医院为例,研究单床效率评价模型及其应用,为医院床位管理提供参考和借鉴。方法通过访谈确定样本病区和关键指标,根据医院信息系统中的患者资料构建两级数据库。采用K中心聚类法,将床位按其年均空置天数(x)、年均周转次数(y)及年人均CMI(z)进行归类。以x,y,z为界限,构建三维8象限床位效率评价模型。通过比较组内均值点Ak(xk,yk,zk)较总体均值点A0(x,y,z)的偏移情况分析单床效率特征。并通过将床号对应到所属诊疗组,逐一分析各诊疗组的床位效率情况。结果根据利用效率,36张床位分布于模型的4个不同象限中。50%(18/36)的床位得到了较好的利用,28%(10/36)的床位患者收治量尚有提升空间,19%(7/36)的床位资源浪费较明显。各诊疗组间的床位效率存在明显差异。结论本研究的床位效率模型可以从病区总体及诊疗组两个层面对床位效率进行评价,实现对相关问题的深入挖掘。该模型主要适用于床位由固定诊疗组或医生负责的情况,并可通过调整和扩展,满足医院不同的战略需要。 展开更多
关键词 医院管理 床位管理 K中心聚类法 欧几里得距离
原文传递
An efficient hybrid evolutionary optimization algorithm based on PSO and SA for clustering 被引量:9
7
作者 Taher NIKNAM Babak AMIRI +1 位作者 Javad OLAMAEI Ali AREFI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第4期512-519,共8页
The K-means algorithm is one of the most popular techniques in clustering. Nevertheless, the performance of the Kmeans algorithm depends highly on initial cluster centers and converges to local minima. This paper prop... The K-means algorithm is one of the most popular techniques in clustering. Nevertheless, the performance of the Kmeans algorithm depends highly on initial cluster centers and converges to local minima. This paper proposes a hybrid evolutionary programming based clustering algorithm, called PSO-SA, by combining particle swarm optimization (PSO) and simulated annealing (SA). The basic idea is to search around the global solution by SA and to increase the information exchange among particles using a mutation operator to escape local optima. Three datasets, Iris, Wisconsin Breast Cancer, and Ripley's Glass, have been considered to show the effectiveness of the proposed clustering algorithm in providing optimal clusters. The simulation results show that the PSO-SA clustering algorithm not only has a better response but also converges more quickly than the K-means, PSO, and SA algorithms. 展开更多
关键词 Simulated annealing (SA) Data clustering Hybrid evolutionary optimization algorithm K-means clustering Parti-cle swarm optimization (PSO)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部