为更加准确地检测变压器的绕组状态,提出了自适应筛选EMD算法来对变压器突发短路下的非平稳和强时变振动信号进行分解,进而根据得到的Hilbert边际谱定义了中心频率分布系数(Central Frequency Distribution Coefficient,CFDC)来对变压...为更加准确地检测变压器的绕组状态,提出了自适应筛选EMD算法来对变压器突发短路下的非平稳和强时变振动信号进行分解,进而根据得到的Hilbert边际谱定义了中心频率分布系数(Central Frequency Distribution Coefficient,CFDC)来对变压器绕组状态进行检测。仿真分析和某大型变压器实测振动信号的计算结果表明,增加了自适应筛选因子的改进EMD算法能够有效地抑制模态混叠现象,提高了振动信号分解的准确性,所定义的CFDC及其变化可以清晰地反映出变压器绕组状态改变的演变过程,便于及时有效检测绕组状态,确保变压器的安全可靠运行。展开更多
文摘为更加准确地检测变压器的绕组状态,提出了自适应筛选EMD算法来对变压器突发短路下的非平稳和强时变振动信号进行分解,进而根据得到的Hilbert边际谱定义了中心频率分布系数(Central Frequency Distribution Coefficient,CFDC)来对变压器绕组状态进行检测。仿真分析和某大型变压器实测振动信号的计算结果表明,增加了自适应筛选因子的改进EMD算法能够有效地抑制模态混叠现象,提高了振动信号分解的准确性,所定义的CFDC及其变化可以清晰地反映出变压器绕组状态改变的演变过程,便于及时有效检测绕组状态,确保变压器的安全可靠运行。