Anodic urea oxidation reaction(UOR)is an intriguing half reaction that can replace oxygen evolution reaction(OER)and work together with hydrogen evolution reaction(HER)toward simultaneous hydrogen fuel generation and ...Anodic urea oxidation reaction(UOR)is an intriguing half reaction that can replace oxygen evolution reaction(OER)and work together with hydrogen evolution reaction(HER)toward simultaneous hydrogen fuel generation and urea-rich wastewater purification;however,it remains a challenge to achieve overall urea electrolysis with high efficiency.Herein,we report a multifunctional electrocatalyst termed as Rh/Ni V-LDH,through integration of nickel-vanadium layered double hydroxide(LDH)with rhodium single-atom catalyst(SAC),to achieve this goal.The electrocatalyst delivers high HER mass activity of0.262 A mg^(-1) and exceptionally high turnover frequency(TOF)of 2.125 s^(-1) at an overpotential of100 m V.Moreover,exceptional activity toward urea oxidation is addressed,which requires a potential of 1.33 V to yield 10 mA cm^(-2),endorsing the potential to surmount the sluggish OER.The splendid catalytic activity is enabled by the synergy of the Ni V-LDH support and the atomically dispersed Rh sites(located on the Ni-V hollow sites)as evidenced both experimentally and theoretically.The selfsupported Rh/Ni V-LDH catalyst serving as the anode and cathode for overall urea electrolysis(1 mol L^(-1) KOH with 0.33 mol L^(-1) urea as electrolyte)only requires a small voltage of 1.47 V to deliver 100 mA cm^(-2) with excellent stability.This work provides important insights into multifunctional SAC design from the perspective of support sites toward overall electrolysis applications.展开更多
Mass production of highly efficient,durable,and inexpensive single atomic catalysts is currently the major challenge associated with the oxygen reduction reaction(ORR)for fuel cells.In this study,we develop a general ...Mass production of highly efficient,durable,and inexpensive single atomic catalysts is currently the major challenge associated with the oxygen reduction reaction(ORR)for fuel cells.In this study,we develop a general strategy that uses a simple ultrasonic atomization coupling with pyrolysis and calcination process to synthesize single atomic FeNC catalysts(FeNC SACs)at large scale.The microstructure characterizations confirm that the active centers root in the single atomic Fe sites chelating to the four-fold pyridinic N atoms.The identified specific Fe active sites with the variable valence states facilitate the transfer of electrons,endowing the FeNC SACs with excellent electrochemical ORR activity.The FeNC SACs were used as cathode catalysts in a homemade Zn-air battery,giving an open-circuit voltage(OCV)of 1.43 V,which is substantially higher than that of commercial Pt/C catalysts.This study provides a simple approach to the synthesis of single atomic catalysts at large scale.展开更多
基金finically supported by the National Key R&D Program of China(2017YFE0120500)the National Natural Science Foundation of China(51972129,51702150,and 21725102)+2 种基金the Key Research and Development Program of Hubei(2020BAB079)Bintuan Science and Technology Program(2020DB002,and 2022DB009)the Science and Technology Innovation Committee Foundation of Shenzhen(JCYJ20210324141613032 and JCYJ20190809142019365)。
文摘Anodic urea oxidation reaction(UOR)is an intriguing half reaction that can replace oxygen evolution reaction(OER)and work together with hydrogen evolution reaction(HER)toward simultaneous hydrogen fuel generation and urea-rich wastewater purification;however,it remains a challenge to achieve overall urea electrolysis with high efficiency.Herein,we report a multifunctional electrocatalyst termed as Rh/Ni V-LDH,through integration of nickel-vanadium layered double hydroxide(LDH)with rhodium single-atom catalyst(SAC),to achieve this goal.The electrocatalyst delivers high HER mass activity of0.262 A mg^(-1) and exceptionally high turnover frequency(TOF)of 2.125 s^(-1) at an overpotential of100 m V.Moreover,exceptional activity toward urea oxidation is addressed,which requires a potential of 1.33 V to yield 10 mA cm^(-2),endorsing the potential to surmount the sluggish OER.The splendid catalytic activity is enabled by the synergy of the Ni V-LDH support and the atomically dispersed Rh sites(located on the Ni-V hollow sites)as evidenced both experimentally and theoretically.The selfsupported Rh/Ni V-LDH catalyst serving as the anode and cathode for overall urea electrolysis(1 mol L^(-1) KOH with 0.33 mol L^(-1) urea as electrolyte)only requires a small voltage of 1.47 V to deliver 100 mA cm^(-2) with excellent stability.This work provides important insights into multifunctional SAC design from the perspective of support sites toward overall electrolysis applications.
基金the National Natural Science Foundation of China(NSFC,51971029)the NSFC-BRICS STI Framework Program(51861145309)+4 种基金the National S&T Major Project(2018ZX10301201)the Joint Research Project of University of Science and Technology Beijing&Taipei University of Technology(TW2018007)the“1125”Zhihui Zhengzhou Talent Project of Henan Province(39080070)the Fundamental Research Funds for the Central Universities(FRF-BR-15-027A)the fund supports from the“100 talent plan”fund of Fujian province(Contract No:2017-802)。
文摘Mass production of highly efficient,durable,and inexpensive single atomic catalysts is currently the major challenge associated with the oxygen reduction reaction(ORR)for fuel cells.In this study,we develop a general strategy that uses a simple ultrasonic atomization coupling with pyrolysis and calcination process to synthesize single atomic FeNC catalysts(FeNC SACs)at large scale.The microstructure characterizations confirm that the active centers root in the single atomic Fe sites chelating to the four-fold pyridinic N atoms.The identified specific Fe active sites with the variable valence states facilitate the transfer of electrons,endowing the FeNC SACs with excellent electrochemical ORR activity.The FeNC SACs were used as cathode catalysts in a homemade Zn-air battery,giving an open-circuit voltage(OCV)of 1.43 V,which is substantially higher than that of commercial Pt/C catalysts.This study provides a simple approach to the synthesis of single atomic catalysts at large scale.