We experimentally study the wavelength dependence of light propagation in a water suspension of lithium niobate microcrystalline particles.First,the ballistic transmission in the visible range of the suspension is mea...We experimentally study the wavelength dependence of light propagation in a water suspension of lithium niobate microcrystalline particles.First,the ballistic transmission in the visible range of the suspension is measured.The nonlinear relationship is observed between the transport mean free path and the wavelength of the incident light.Secondly,we measure the coherent backscattering (CBS) of the sample at different wavelengths.The full width at half maximum of the CBS cone at 532 nm is about 1.24 times as large as that at 671 nm.The results indicate that the light with a long wavelength propagates further than the short wavelength light and the localization state of the short one is stronger.Finally,we investigate the light-controllable CBS experiments in the disordered materials of anisotropic scatterers,which show that the configuration of pump light with the longer wavelength and the probe light with the shorter wavelength performs better.展开更多
The correction of buoyancy effects is tackled for particles moving close to a singular corner in creeping flow conditions.A few density-mismatched particle trajectories are used to reconstruct the dynamics of a neutra...The correction of buoyancy effects is tackled for particles moving close to a singular corner in creeping flow conditions.A few density-mismatched particle trajectories are used to reconstruct the dynamics of a neutrally-buoyant particle all over the target domain.We propose to take advantage of the dissipative dynamics of density-mismatched particles in order to probe the target domain.Thereafter,we retrieve the neutrally-buoyant particle flow all over the domain by reconstructing the phase space of the density-mismatched particulate flow and taking the limit of the particle-to-fluid density ratio tending to one.The robustness of such an approach is demonstrated by deliberately ill-conditioning the reconstruction operator.In fact,we show that our algorithm well performs even when we rely on qualitatively-different density-mismatched orbit topologies or on bundles of close trajectories rather than homogeneously distributed orbits.Potential applications to microfluidics and improvements of the proposed algorithm are finally discussed.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 10874093 and 10804055)the National Basic Research Program of China (Grant Nos. 2007CB307002 and 2010CB934101)+1 种基金the 111 Project (Grant No. B07013)the Program for NCET
文摘We experimentally study the wavelength dependence of light propagation in a water suspension of lithium niobate microcrystalline particles.First,the ballistic transmission in the visible range of the suspension is measured.The nonlinear relationship is observed between the transport mean free path and the wavelength of the incident light.Secondly,we measure the coherent backscattering (CBS) of the sample at different wavelengths.The full width at half maximum of the CBS cone at 532 nm is about 1.24 times as large as that at 671 nm.The results indicate that the light with a long wavelength propagates further than the short wavelength light and the localization state of the short one is stronger.Finally,we investigate the light-controllable CBS experiments in the disordered materials of anisotropic scatterers,which show that the configuration of pump light with the longer wavelength and the probe light with the shorter wavelength performs better.
文摘The correction of buoyancy effects is tackled for particles moving close to a singular corner in creeping flow conditions.A few density-mismatched particle trajectories are used to reconstruct the dynamics of a neutrally-buoyant particle all over the target domain.We propose to take advantage of the dissipative dynamics of density-mismatched particles in order to probe the target domain.Thereafter,we retrieve the neutrally-buoyant particle flow all over the domain by reconstructing the phase space of the density-mismatched particulate flow and taking the limit of the particle-to-fluid density ratio tending to one.The robustness of such an approach is demonstrated by deliberately ill-conditioning the reconstruction operator.In fact,we show that our algorithm well performs even when we rely on qualitatively-different density-mismatched orbit topologies or on bundles of close trajectories rather than homogeneously distributed orbits.Potential applications to microfluidics and improvements of the proposed algorithm are finally discussed.