Conventional loggings provide the essential data for AVO (Amplitude-Versus- Offset) analysis in rock physics, which can build a bridge linking petrophysics and seismic data. However, if some complex fluid systems, s...Conventional loggings provide the essential data for AVO (Amplitude-Versus- Offset) analysis in rock physics, which can build a bridge linking petrophysics and seismic data. However, if some complex fluid systems, such as serious fluid invasion to formation, low resistivity response or complicated water salinity etc. exist in reservoirs, the conventional logs may fail to provide quality data, leading to calculated errors for elastic properties so worse that the AVO results cannot match the seismic data. To overcome such difficulties in Tertiary reservoirs of Bohai Gulf in China, we utilized both conventional logs and CMR- MDT tool (Combinable Magnetic Resonance and Modular Formation Dynamics Tester) to perform formation evaluation and reservoir descriptions. Our research proposes, it allows petrophysicists to acquire reservoir parameters (e.g. porosity, permeability, water saturation, bound fluids and pore pressure etc), and then these results to combine with core analysis based on laboratory's measurements to carry out a further rock physics study and AVO analysis in seismic domain.展开更多
文摘Conventional loggings provide the essential data for AVO (Amplitude-Versus- Offset) analysis in rock physics, which can build a bridge linking petrophysics and seismic data. However, if some complex fluid systems, such as serious fluid invasion to formation, low resistivity response or complicated water salinity etc. exist in reservoirs, the conventional logs may fail to provide quality data, leading to calculated errors for elastic properties so worse that the AVO results cannot match the seismic data. To overcome such difficulties in Tertiary reservoirs of Bohai Gulf in China, we utilized both conventional logs and CMR- MDT tool (Combinable Magnetic Resonance and Modular Formation Dynamics Tester) to perform formation evaluation and reservoir descriptions. Our research proposes, it allows petrophysicists to acquire reservoir parameters (e.g. porosity, permeability, water saturation, bound fluids and pore pressure etc), and then these results to combine with core analysis based on laboratory's measurements to carry out a further rock physics study and AVO analysis in seismic domain.