Based on the theory of reactive extraction, new solvent systems were developed to replace butylacetate for extraction of macrolide antibiotics (erythromycin, kitasamycin, spiramycin meleumycin etc.). A new neutral com...Based on the theory of reactive extraction, new solvent systems were developed to replace butylacetate for extraction of macrolide antibiotics (erythromycin, kitasamycin, spiramycin meleumycin etc.). A new neutral complex solvent extraction system, fatty alcohol-kerosene (marked by El), was used for extraction of erythromycin, one of the macrolide antibiotics. The extraction equilibrium equation is obtained, and the extraction distribution is as followsD = exp (-36.33×103/RT + 18.77)[B](o)1.1/(1 + 108.07-PH)The effects of several parameters on extraction equilibrium were investigated. Furthermore, a new synergistic extraction system (marked by E2) was developed, in which another solvent was used as synergistic agent to replace the diluent kerosene in the neutral complex extraction system. Based on these new extraction systems, an improved process for extraction of erythromycin was developed, showing remarkable advantages in technology and economics owing to its low solvent consumption of 3kg per billion unit compared with 9—10 for butylacetate. The recovery process of solvent from raffinate may be eliminated.展开更多
Acylation of anthracene and oxalyl chloride in the presence of anhydrous AlCl3 was investigated. Pure 1,2-aceanthrylenedione, which is used as new functional macromolecule, was prepared by extraction and recrystallati...Acylation of anthracene and oxalyl chloride in the presence of anhydrous AlCl3 was investigated. Pure 1,2-aceanthrylenedione, which is used as new functional macromolecule, was prepared by extraction and recrystallation. The structure of 1,2-aceanthrylenedione was identified by measure of melting point, GC/MS, FTIR and 1HNMR analyses. The influences of various parameters, such as solvent, dosage of catalyst, molar ratio of anthracene to oxalyl chloride, reaction temperature, and reaction time were studied. The anhydrous AlCl3 was found to catalyze the reaction with high yeild and good selectivity. When the reaction temperature is 303K, reaction time is 5h and molar ratio of anthracene to oxalyl chloride is 1:2, the yield and selectivity of 1,2-aceanthrylenedione is 83.8 % and 92.3% respectively.展开更多
This study has developed an efficient method to achieve excellent thermal dimensional stability and desired dimensions of hollow polyester fiber. Firstly,the influence of thermal treatment temperate( 140-180 ℃) on th...This study has developed an efficient method to achieve excellent thermal dimensional stability and desired dimensions of hollow polyester fiber. Firstly,the influence of thermal treatment temperate( 140-180 ℃) on the degree of shrinkage of fiber was investigated. The influence was also analyzed with a 2nd heating to simulate the application situation. It was discovered that the heat treatment at a temperature which was above the application temperature( 2nd heating) would efficiently remove the internal stress in the fiber and improve the thermal dimensional stability.Secondly,the impact of heat treatment temperature on the fiber diameter and the degree of hollowness were studied. The results implied that with a fixed fiber length, higher treatment temperature led to thinner fiber and a lower degree of hollowness.Last but not least,key parameters that could further influence the fiber dimensions were investigated. The results suggested that the fiber diameters and the degree of hollowness could be further controlled by tuning the drawing speed,the spinning meter pump output and cooling status while the spinneret parameters were fixed.展开更多
Ordered mesoporous BaCO3/C composites were synthesized by a multi-component co-assembly method combined with a carbonization process using phenolic resol as carbon source, barium nitrate as barium precursor, and tribl...Ordered mesoporous BaCO3/C composites were synthesized by a multi-component co-assembly method combined with a carbonization process using phenolic resol as carbon source, barium nitrate as barium precursor, and triblock copolymer Pluronic F127 as template. The synthesized materials were characterized by X-ray diffraction, transmission electron microscopy, N2 physical adsorption, thermogravimetric analysis, and temperature-programmed desorption of CO〉 When BaCO3 contents were increased from 9.1 wt% to 44.7 wt%, pore size increased from 3.1 to 4.3 nm and the BET (Brunauer-Emmett-Teller) surface area initially increased to a maximum value of 390 m2 g^-1 (at a BaCO3 content of 18.5 wt%) before subsequently decreasing. BaCO3 was well dispersed in the amorphous carbon framework, and no phase separation was observed. The mesoporous BaCO3/C composites exhibited high catalytic activities toward the transesterification of glycerol and dimethyl carbonate into glycerol carbonate. A glycerol conversion of 97.8% and a glycerol carbonate selectivity of 98.5% were obtained under the optimized reaction conditions.展开更多
文摘Based on the theory of reactive extraction, new solvent systems were developed to replace butylacetate for extraction of macrolide antibiotics (erythromycin, kitasamycin, spiramycin meleumycin etc.). A new neutral complex solvent extraction system, fatty alcohol-kerosene (marked by El), was used for extraction of erythromycin, one of the macrolide antibiotics. The extraction equilibrium equation is obtained, and the extraction distribution is as followsD = exp (-36.33×103/RT + 18.77)[B](o)1.1/(1 + 108.07-PH)The effects of several parameters on extraction equilibrium were investigated. Furthermore, a new synergistic extraction system (marked by E2) was developed, in which another solvent was used as synergistic agent to replace the diluent kerosene in the neutral complex extraction system. Based on these new extraction systems, an improved process for extraction of erythromycin was developed, showing remarkable advantages in technology and economics owing to its low solvent consumption of 3kg per billion unit compared with 9—10 for butylacetate. The recovery process of solvent from raffinate may be eliminated.
基金National Natural Science Foundation of China (No.20207003)
文摘Acylation of anthracene and oxalyl chloride in the presence of anhydrous AlCl3 was investigated. Pure 1,2-aceanthrylenedione, which is used as new functional macromolecule, was prepared by extraction and recrystallation. The structure of 1,2-aceanthrylenedione was identified by measure of melting point, GC/MS, FTIR and 1HNMR analyses. The influences of various parameters, such as solvent, dosage of catalyst, molar ratio of anthracene to oxalyl chloride, reaction temperature, and reaction time were studied. The anhydrous AlCl3 was found to catalyze the reaction with high yeild and good selectivity. When the reaction temperature is 303K, reaction time is 5h and molar ratio of anthracene to oxalyl chloride is 1:2, the yield and selectivity of 1,2-aceanthrylenedione is 83.8 % and 92.3% respectively.
基金Innovation Fund Project of National Commercial Aircraft Manufacturing Engineering Research Center(No.SAM C14-JS-15-048)Natural Science Foundation of Shanghai,China(No.13ZR1400400)the Fundamental Research Funds for the Central Universities,China
文摘This study has developed an efficient method to achieve excellent thermal dimensional stability and desired dimensions of hollow polyester fiber. Firstly,the influence of thermal treatment temperate( 140-180 ℃) on the degree of shrinkage of fiber was investigated. The influence was also analyzed with a 2nd heating to simulate the application situation. It was discovered that the heat treatment at a temperature which was above the application temperature( 2nd heating) would efficiently remove the internal stress in the fiber and improve the thermal dimensional stability.Secondly,the impact of heat treatment temperature on the fiber diameter and the degree of hollowness were studied. The results implied that with a fixed fiber length, higher treatment temperature led to thinner fiber and a lower degree of hollowness.Last but not least,key parameters that could further influence the fiber dimensions were investigated. The results suggested that the fiber diameters and the degree of hollowness could be further controlled by tuning the drawing speed,the spinning meter pump output and cooling status while the spinneret parameters were fixed.
基金supported by the Program for Key Science and Technology Innovation Team of Shaanxi Province(2012KCT-21)the Fundamental Research Funds for the Central Universities(GK201305011)
文摘Ordered mesoporous BaCO3/C composites were synthesized by a multi-component co-assembly method combined with a carbonization process using phenolic resol as carbon source, barium nitrate as barium precursor, and triblock copolymer Pluronic F127 as template. The synthesized materials were characterized by X-ray diffraction, transmission electron microscopy, N2 physical adsorption, thermogravimetric analysis, and temperature-programmed desorption of CO〉 When BaCO3 contents were increased from 9.1 wt% to 44.7 wt%, pore size increased from 3.1 to 4.3 nm and the BET (Brunauer-Emmett-Teller) surface area initially increased to a maximum value of 390 m2 g^-1 (at a BaCO3 content of 18.5 wt%) before subsequently decreasing. BaCO3 was well dispersed in the amorphous carbon framework, and no phase separation was observed. The mesoporous BaCO3/C composites exhibited high catalytic activities toward the transesterification of glycerol and dimethyl carbonate into glycerol carbonate. A glycerol conversion of 97.8% and a glycerol carbonate selectivity of 98.5% were obtained under the optimized reaction conditions.