Natural gas hydrates are considered as strategic resources with commercial potential in the 21st century. Obvious BSR characteristics will be shown on seismic profiles, if there exist natural gas hydrates. The AVO met...Natural gas hydrates are considered as strategic resources with commercial potential in the 21st century. Obvious BSR characteristics will be shown on seismic profiles, if there exist natural gas hydrates. The AVO method is one of the methods which can be used to identify and forecast lithologic characteristics and fluid properties by using the relationship between Amplitude and Offset. AVO anomaly is one of the significant signs to check out whether or not there is free gas below the BSR, so it can be used to detect natural gas hydrates from the seismic profile. Considering the geological and geophysical characteristics of the Okinawa Trough and making use of the techniques mentioned above, we can conclude that the conditions there are favorable for the formation and concentration of natural gas hydrates. By analyzing the data collected from the study area, one can discover many different anomalous phenomena on the seismic profile which are related to the existence of natural gas hydrates. Preliminary estimation of the natural gas hydrates in the Okinawa Trough shows that the trough is rich in natural gas hydrates and may become a potential important resources exploration area.展开更多
Carbon dioxide(CO_2) is greenhouse gas which originates primarily as a main combustion product of biogas and landfill gas. To separate this gas, an inside coated thin film composite(TFC) hollow fiber membrane was deve...Carbon dioxide(CO_2) is greenhouse gas which originates primarily as a main combustion product of biogas and landfill gas. To separate this gas, an inside coated thin film composite(TFC) hollow fiber membrane was developed by interfacial polymerization between 1,3–cyclohexanebis–methylamine(CHMA) and trimesoyl chloride(TMC). ATR-FTIR, SEM and AFM were used to characterize the active thin layer formed inside the PSf hollow fiber. The separation behavior of the CHMA-TMC/PSf membrane was scrutinized by studying various effects like feed gas pressure and temperature. Furthermore, the influence of CHMA concentration and TMC concentration on membrane morphology and performance were investigated. As a result, it was found that mutually the CHMA concentration and TMC concentration play key roles in determining membrane morphology and performance. Moreover, the CHMA-TMC/PSf composite membrane showed good CO_2/CH_4 separation performance. For CO_2/CH_4 mixture gas(30/70 by volume) test, the membrane(PD1 prepared by CHMA 1.0% and TMC 0.5%) showed a CO_2 permeance of 25 GPU and the best CO_2/CH_4 selectivity of 28 at stage cut of 0.1. The high CO_2/CH_4 separation performance of CHMA-TMC/PSf thin film composite membrane was mostly accredited to the thin film thickness and the properties of binary amino groups.展开更多
基金supported by the National High Technology Research and Development (863) Program (Grant No.2006AA09Z339)the Natural Science Foundation of Shandong, China (Grant No. Y2006E09)
文摘Natural gas hydrates are considered as strategic resources with commercial potential in the 21st century. Obvious BSR characteristics will be shown on seismic profiles, if there exist natural gas hydrates. The AVO method is one of the methods which can be used to identify and forecast lithologic characteristics and fluid properties by using the relationship between Amplitude and Offset. AVO anomaly is one of the significant signs to check out whether or not there is free gas below the BSR, so it can be used to detect natural gas hydrates from the seismic profile. Considering the geological and geophysical characteristics of the Okinawa Trough and making use of the techniques mentioned above, we can conclude that the conditions there are favorable for the formation and concentration of natural gas hydrates. By analyzing the data collected from the study area, one can discover many different anomalous phenomena on the seismic profile which are related to the existence of natural gas hydrates. Preliminary estimation of the natural gas hydrates in the Okinawa Trough shows that the trough is rich in natural gas hydrates and may become a potential important resources exploration area.
基金Supported by the National Research Council of Science&Technology(NST)grant by the Korea government(MSIP)(No.CRC-15-07-KIER)
文摘Carbon dioxide(CO_2) is greenhouse gas which originates primarily as a main combustion product of biogas and landfill gas. To separate this gas, an inside coated thin film composite(TFC) hollow fiber membrane was developed by interfacial polymerization between 1,3–cyclohexanebis–methylamine(CHMA) and trimesoyl chloride(TMC). ATR-FTIR, SEM and AFM were used to characterize the active thin layer formed inside the PSf hollow fiber. The separation behavior of the CHMA-TMC/PSf membrane was scrutinized by studying various effects like feed gas pressure and temperature. Furthermore, the influence of CHMA concentration and TMC concentration on membrane morphology and performance were investigated. As a result, it was found that mutually the CHMA concentration and TMC concentration play key roles in determining membrane morphology and performance. Moreover, the CHMA-TMC/PSf composite membrane showed good CO_2/CH_4 separation performance. For CO_2/CH_4 mixture gas(30/70 by volume) test, the membrane(PD1 prepared by CHMA 1.0% and TMC 0.5%) showed a CO_2 permeance of 25 GPU and the best CO_2/CH_4 selectivity of 28 at stage cut of 0.1. The high CO_2/CH_4 separation performance of CHMA-TMC/PSf thin film composite membrane was mostly accredited to the thin film thickness and the properties of binary amino groups.