期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于语义感知的中文短文本摘要生成模型 被引量:4
1
作者 倪海清 刘丹 史梦雨 《计算机科学》 CSCD 北大核心 2020年第6期74-78,共5页
文本摘要生成技术能够从海量数据中概括出关键信息,有效解决用户信息过载的问题。目前序列到序列模型被广泛应用于英文文本摘要生成领域,而在中文文本摘要生成领域没有对该模型进行深入研究。对于传统的序列到序列模型,解码器通过注意... 文本摘要生成技术能够从海量数据中概括出关键信息,有效解决用户信息过载的问题。目前序列到序列模型被广泛应用于英文文本摘要生成领域,而在中文文本摘要生成领域没有对该模型进行深入研究。对于传统的序列到序列模型,解码器通过注意力机制将编码器输出的每一个词的隐藏状态作为原始文本完整的语义信息来生成摘要,但是编码器输出的每一个词的隐藏状态仅包含前、后词的语义信息,不包含原始文本完整的语义信息,导致生成摘要缺失原始文本的核心信息,影响生成摘要的准确性和可读性。为此,文中提出基于语义感知的中文短文本摘要生成模型SA-Seq2Seq,以结合注意力机制的序列到序列模型为基础,通过使用预训练模型BERT,在编码器中将中文短文本作为整体语义信息引入,使得每一个词包含整体语义信息;在解码器中将参考摘要作为目标语义信息计算语义不一致损失,以确保生成摘要的语义完整性。采用中文短文本摘要数据集LCSTS进行实验,结果表明,模型SA-Seq2Seq在评估标准ROUGE上的效果相对于基准模型有显著提高,其ROUGE-1,ROUGE-2和ROUGE-L评分在基于字符处理的数据集上分别提升了3.4%,7.1%和6.1%,在基于词语处理的数据集上分别提升了2.7%,5.4%和11.7%,即模型SA-Seq2Seq能够更有效地融合中文短文本的整体语义信息,挖掘其关键信息,确保生成摘要的流畅性和连贯性,可以应用于中文短文本摘要生成任务。 展开更多
关键词 中文短文本摘要 序列到序列模型 注意力机制 预训练模型 语义感知
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部