A new empirical approach for the seasonal prediction of annual Atlantic tropical storm number (ATSN) was developed using precipitation and 500 hPa geopotential height data from the preceding January February and April...A new empirical approach for the seasonal prediction of annual Atlantic tropical storm number (ATSN) was developed using precipitation and 500 hPa geopotential height data from the preceding January February and April May.The 2.5°×2.5° resolution reanalysis data from both the US National Center for Environmental Prediction/the National Center for Atmospheric Research (NCEP/NCAR) and the European Center for Medium-Range Weather Forecasting (ECMWF) were applied.The model was cross-validated using data from 1979 2002.The ATSN predictions from the two reanalysis models were correlated with the observations with the anomaly correlation coefficients (ACC) of 0.79 (NCEP/NCAR) and 0.78 (ECMWF) and the multi-year mean absolute prediction errors (MAE) of 1.85 and 1.76,respectively.When the predictions of the two models were averaged,the ACC increased to 0.90 and the MAE decreased to 1.18,an exceptionally high score.Therefore,this new empirical approach has the potential to improve the operational prediction of the annual tropical Atlantic storm frequency.展开更多
Based on the tropical cyclone data from the Central Meteorological Observatory of China, Japan Meteorological Agency, Joint Typhoon Warning Center and European Centre for Medium-Range Weather Forecasts (ECMWF) durin...Based on the tropical cyclone data from the Central Meteorological Observatory of China, Japan Meteorological Agency, Joint Typhoon Warning Center and European Centre for Medium-Range Weather Forecasts (ECMWF) during the period of 2004 to 2009, three consensus methods are used in tropical cyclone (TC) track forecasts. Operational consensus results show that the objective forecasts of ECMWF help to improve consensus skill by 2%, 3%-5% and 3%-5%, decrease track bias by 2.5 kin, 6-9 km and 10-12 km for the 24 h, 48 h and 72 h forecasts respectively over the years of 2007 to 2009. Analysis also indicates that consensus forecasts hold positive skills relative to each member. The multivariate regression composite is a method that shows relatively low skill, while the methods of arithmetic averaging and composite (in which the weighting coefficient is the reciprocal square of mean error of members) have almost comparable skills among members. Consensus forecast for a lead time of 96 h has negative skill relative to the ECMWF objective forecast.展开更多
基金supported by the Major State Basic Research Development Program of China (Grant No.2009CB421406)the National Natural Science Foundation of China (Grant Nos. 40631005 and 40875048)
文摘A new empirical approach for the seasonal prediction of annual Atlantic tropical storm number (ATSN) was developed using precipitation and 500 hPa geopotential height data from the preceding January February and April May.The 2.5°×2.5° resolution reanalysis data from both the US National Center for Environmental Prediction/the National Center for Atmospheric Research (NCEP/NCAR) and the European Center for Medium-Range Weather Forecasting (ECMWF) were applied.The model was cross-validated using data from 1979 2002.The ATSN predictions from the two reanalysis models were correlated with the observations with the anomaly correlation coefficients (ACC) of 0.79 (NCEP/NCAR) and 0.78 (ECMWF) and the multi-year mean absolute prediction errors (MAE) of 1.85 and 1.76,respectively.When the predictions of the two models were averaged,the ACC increased to 0.90 and the MAE decreased to 1.18,an exceptionally high score.Therefore,this new empirical approach has the potential to improve the operational prediction of the annual tropical Atlantic storm frequency.
基金National Natural Science Foundation of Ningbo City(2013A610124)Ningbo Planning Project of Science and Technology(2012C50044)Nanhai Disaster Mitigation Fund of Hainan Provincial Meteorological Bureau(NH2008ZY02)
文摘Based on the tropical cyclone data from the Central Meteorological Observatory of China, Japan Meteorological Agency, Joint Typhoon Warning Center and European Centre for Medium-Range Weather Forecasts (ECMWF) during the period of 2004 to 2009, three consensus methods are used in tropical cyclone (TC) track forecasts. Operational consensus results show that the objective forecasts of ECMWF help to improve consensus skill by 2%, 3%-5% and 3%-5%, decrease track bias by 2.5 kin, 6-9 km and 10-12 km for the 24 h, 48 h and 72 h forecasts respectively over the years of 2007 to 2009. Analysis also indicates that consensus forecasts hold positive skills relative to each member. The multivariate regression composite is a method that shows relatively low skill, while the methods of arithmetic averaging and composite (in which the weighting coefficient is the reciprocal square of mean error of members) have almost comparable skills among members. Consensus forecast for a lead time of 96 h has negative skill relative to the ECMWF objective forecast.