In terms of rock engineering and technology in hydropower construction,the slope stability and monitoring techniques for high slopes of Three Gorges Project,the stability and support technology for high slopes of hydr...In terms of rock engineering and technology in hydropower construction,the slope stability and monitoring techniques for high slopes of Three Gorges Project,the stability and support technology for high slopes of hydropower projects in deep river valley,the stabilization techniques for underground cavern group with large span and high side walls are introduced in this paper.As for rock engineering and technology in highway and railway construction,the Qinghai-Tibet Railway — new construction techniques in permafrost,the support techniques for large squeezing deformation in Wuqiaoling Tunnel,the construction techniques for tunnels in alpine and high-altitude region,the geological prediction techniques for tunnels in karst region,the microseismic monitoring and early warning techniques for rockbursts in deep and long tunnels are presented.For rock engineering and technology inmining engineering,the innovative techniques for roadway support inmines,the simultaneous extraction technique of pillarless coal and gas in coal seams with low permeability,the safe and efficient deep openmining technology,advances in monitoring,early warning and treatment ofmine dynamic disasters are discussed.In addition,the new anchorage techniques and precision blasting technique in rock engineering are introduced.展开更多
In structure of manufacture of PFER (primary fuel and energy resources) in Central Asia region the leading place occupies now organic fuel. Thus about half of total amount of power resources it is necessary on the n...In structure of manufacture of PFER (primary fuel and energy resources) in Central Asia region the leading place occupies now organic fuel. Thus about half of total amount of power resources it is necessary on the natural gas which basic stocks are concentrated in Turkmenistan and Uzbekistan. More than 95% of all electric power in Tajikistan is developed by hydroelectric power stations. Use of hydrogen as energy carrier allows to consider and solve power problems in close connection with ecological. At a large factory electrolysis of water with capacity of 450 t/day and more expenses of the electric power on 1 m3 hydrogen can be finished by capacity up to 4.0-4.5 kWt.h. At such expense of the electric power in a number of power situations electrolysis of water, even in modem conditions can become a competitive method of obtaining of hydrogen.展开更多
The project analyzes the student's participation in complementary activities such as Education Tutorial Program, Junior Company and Academic Center. These organizations have the goal to improve, expand and connect kn...The project analyzes the student's participation in complementary activities such as Education Tutorial Program, Junior Company and Academic Center. These organizations have the goal to improve, expand and connect knowledge learned during classes with several practical activities. They can provide a huge integration between the students and the professors in order to achieve better results in the pedagogical, structural and organizational parts of an engineering major degree. Therefore, the project goes through the impact of each entity in the student's life and the advantages to professional future, focusing the presence of these organizations in the Electrical Engineering Course of Federal University of Rio Grande do Norte.展开更多
Spin engineering is recognized as a promising strategy that modulates the association between d‐orbital electrons and the oxygenated species,and enhances the catalytic kinetics.However,few efforts have been made to c...Spin engineering is recognized as a promising strategy that modulates the association between d‐orbital electrons and the oxygenated species,and enhances the catalytic kinetics.However,few efforts have been made to clarify whether spin engineering could make a considerable enhancement for electrocatalytic water oxidation.Herein,we report the spin engineering of a nanocage‐structured(Co,Ni)Se_(2)/C@FeOOH,that showed significant oxygen evolution reaction(OER)activity.Magnetization measurement presented that the(Co,Ni)Se_(2)/C@FeOOH sample possesses higher polarization spin number(μb=6.966μB/f.u.)compared with that of the(Co,Ni)Se_(2)/C sample(μb=6.398μB/f.u.),for which the enlarged spin polarization number favors the adsorption and desorption energy of the intermediate oxygenated species,as confirmed by surface valance band spectra.Consequently,the(Co,Ni)Se_(2)/C@FeOOH affords remarkable OER product with a low overpotential of 241 mV at a current of 10 mA cm^(-2) and small Tafel slope of 44 mV dec^(-1) in 1.0 mol/L KOH alkaline solution,significantly surpassing the parent(Co,Ni)Se_(2)/C catalyst.This work will trigger a solid step for the design of highly‐efficient OER electrocatalysts.展开更多
文摘In terms of rock engineering and technology in hydropower construction,the slope stability and monitoring techniques for high slopes of Three Gorges Project,the stability and support technology for high slopes of hydropower projects in deep river valley,the stabilization techniques for underground cavern group with large span and high side walls are introduced in this paper.As for rock engineering and technology in highway and railway construction,the Qinghai-Tibet Railway — new construction techniques in permafrost,the support techniques for large squeezing deformation in Wuqiaoling Tunnel,the construction techniques for tunnels in alpine and high-altitude region,the geological prediction techniques for tunnels in karst region,the microseismic monitoring and early warning techniques for rockbursts in deep and long tunnels are presented.For rock engineering and technology inmining engineering,the innovative techniques for roadway support inmines,the simultaneous extraction technique of pillarless coal and gas in coal seams with low permeability,the safe and efficient deep openmining technology,advances in monitoring,early warning and treatment ofmine dynamic disasters are discussed.In addition,the new anchorage techniques and precision blasting technique in rock engineering are introduced.
文摘In structure of manufacture of PFER (primary fuel and energy resources) in Central Asia region the leading place occupies now organic fuel. Thus about half of total amount of power resources it is necessary on the natural gas which basic stocks are concentrated in Turkmenistan and Uzbekistan. More than 95% of all electric power in Tajikistan is developed by hydroelectric power stations. Use of hydrogen as energy carrier allows to consider and solve power problems in close connection with ecological. At a large factory electrolysis of water with capacity of 450 t/day and more expenses of the electric power on 1 m3 hydrogen can be finished by capacity up to 4.0-4.5 kWt.h. At such expense of the electric power in a number of power situations electrolysis of water, even in modem conditions can become a competitive method of obtaining of hydrogen.
文摘The project analyzes the student's participation in complementary activities such as Education Tutorial Program, Junior Company and Academic Center. These organizations have the goal to improve, expand and connect knowledge learned during classes with several practical activities. They can provide a huge integration between the students and the professors in order to achieve better results in the pedagogical, structural and organizational parts of an engineering major degree. Therefore, the project goes through the impact of each entity in the student's life and the advantages to professional future, focusing the presence of these organizations in the Electrical Engineering Course of Federal University of Rio Grande do Norte.
文摘Spin engineering is recognized as a promising strategy that modulates the association between d‐orbital electrons and the oxygenated species,and enhances the catalytic kinetics.However,few efforts have been made to clarify whether spin engineering could make a considerable enhancement for electrocatalytic water oxidation.Herein,we report the spin engineering of a nanocage‐structured(Co,Ni)Se_(2)/C@FeOOH,that showed significant oxygen evolution reaction(OER)activity.Magnetization measurement presented that the(Co,Ni)Se_(2)/C@FeOOH sample possesses higher polarization spin number(μb=6.966μB/f.u.)compared with that of the(Co,Ni)Se_(2)/C sample(μb=6.398μB/f.u.),for which the enlarged spin polarization number favors the adsorption and desorption energy of the intermediate oxygenated species,as confirmed by surface valance band spectra.Consequently,the(Co,Ni)Se_(2)/C@FeOOH affords remarkable OER product with a low overpotential of 241 mV at a current of 10 mA cm^(-2) and small Tafel slope of 44 mV dec^(-1) in 1.0 mol/L KOH alkaline solution,significantly surpassing the parent(Co,Ni)Se_(2)/C catalyst.This work will trigger a solid step for the design of highly‐efficient OER electrocatalysts.