The purpose of this study was to assess the effect of long-term cultivation and water erosion on the soil organic carbon (OC) in particle-size fractions. The study site is located at Nihegou Watershed in the Souther...The purpose of this study was to assess the effect of long-term cultivation and water erosion on the soil organic carbon (OC) in particle-size fractions. The study site is located at Nihegou Watershed in the Southern Loess Plateau, China. The soil at this site is loess with loose and silty structure, and contains macropores. The results showed that the OC concentrations in sediments and in the particle-size fractions of sediments were higher than those in soils and in the particle-size fractions of soils. The OC concentration was highest in the clay particles and was lowest in the sand particles. Clay particles possessed higher OC enrichment ability than silt and sand particles. The proportions of OC in the silt fractions of soil and sediment were the highest (mean value of 53.87% and 58.48%, respectively), and the total proportion of OC in the clay and silt fractions accounted for 96% and 98% of the total OC in the soil and sediment, respectively. The loss of OC was highest in silt particles, with an average value of 0.16 Mg ha^-1 y^-1, and was lowest in the sand (0.003 Mg ha^-1 y^-l). This result suggests that the fine particle-size fraction in the removed sediment may be an important indicator to assess soil OC losses.展开更多
In order to investigate the influence of intermediate principal stress on the stress-strain and strength behaviour of a coarse-grained soil, a series of true triaxial tests were performed. The tests were conducted in ...In order to investigate the influence of intermediate principal stress on the stress-strain and strength behaviour of a coarse-grained soil, a series of true triaxial tests were performed. The tests were conducted in a recently developed true triaxial apparatus with constant minor principal stress σ3 and constant value of intermediate principal stress ratio b=(σ2-σ3)/(σ1-σ3) (al is the vertical stress, and % is the horizontal stress). It is found that the intermediate principal strain, ε2, increases from negative to positive value with the increase of parameter b from zero to unity under a constant minor principal stress. The minor principal strain, ε3, is always negative. This implies that the specimen exhibits an evident anisotropy. The relationship between b and friction angle obtained from the tests is different from that predicted by LADE-DUNCAN and MATSUOKA-NAKAI criteria. Based on the test results, an empirical equation of g(b) that is the shape function of the failure surface on re-plane was presented. The proposed equation is verified to be reasonable by comparing the predicted results using the equation with true triaxial test results of soils, such as coarse-grained soils in this study, sands and gravels in other studies.展开更多
Soil aggregation and organic matter of soils from the pre-Pyrenean range in Catalonia (NE Spain) were studied,in order to assess their quality as carbon sinks and also to select the best soil management practices to p...Soil aggregation and organic matter of soils from the pre-Pyrenean range in Catalonia (NE Spain) were studied,in order to assess their quality as carbon sinks and also to select the best soil management practices to preserve their quality.Aggregate stability,organic carbon and micromorphology were investigated.The highest amount of organic carbon was found in alluvial,deep soils (228 Mg C ha -1 ),and the lowest was in a shallow,stony soil with a low plant cover (78 Mg C ha -1 ).Subsurface horizons of degraded soils under pastures were the ones with smaller and less-stable aggregates.Fresh residues of organic matter (OM) were found mostly in interaggregate spaces.Within the aggregates there were some organic remains that were beginning to decompose,and also impregnative nodules of amorphous OM.Although OM was evenly distributed among the aggregate fractions,the larger blocky peds had more specific surface,contained less decomposed OM and had a lower organic/mineral interphase than smaller crumb aggregates,which were also more stable.Soil carbon storage was affected primarily by the OM inputs in the surface horizons.In order to store organic carbon over the mid- and long-term periods,the mechanisms favouring structuration through biological activity and creating small aggregates with intrapedal stable microporosities seemed to be the most effective.展开更多
基金supported by the grants from President Foundation of Northwest A & F University, China
文摘The purpose of this study was to assess the effect of long-term cultivation and water erosion on the soil organic carbon (OC) in particle-size fractions. The study site is located at Nihegou Watershed in the Southern Loess Plateau, China. The soil at this site is loess with loose and silty structure, and contains macropores. The results showed that the OC concentrations in sediments and in the particle-size fractions of sediments were higher than those in soils and in the particle-size fractions of soils. The OC concentration was highest in the clay particles and was lowest in the sand particles. Clay particles possessed higher OC enrichment ability than silt and sand particles. The proportions of OC in the silt fractions of soil and sediment were the highest (mean value of 53.87% and 58.48%, respectively), and the total proportion of OC in the clay and silt fractions accounted for 96% and 98% of the total OC in the soil and sediment, respectively. The loss of OC was highest in silt particles, with an average value of 0.16 Mg ha^-1 y^-1, and was lowest in the sand (0.003 Mg ha^-1 y^-l). This result suggests that the fine particle-size fraction in the removed sediment may be an important indicator to assess soil OC losses.
基金Project(50639050) supported by the National Natural Science Foundation of China and Er-Tan Hydraulicpower Limited CompanyProject(50579014) supported by the National Natural Science Foundation of China+3 种基金Project(09KJD560003) supported by the Natural Science Foundation of Jiangsu Higher Education Institutions of ChinaProject(BK2007582) supported by Jiangsu Provincial Natural Science Foundation of ChinaProject(20070294002) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(GH200904) supported by Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering,Hohai University,China
文摘In order to investigate the influence of intermediate principal stress on the stress-strain and strength behaviour of a coarse-grained soil, a series of true triaxial tests were performed. The tests were conducted in a recently developed true triaxial apparatus with constant minor principal stress σ3 and constant value of intermediate principal stress ratio b=(σ2-σ3)/(σ1-σ3) (al is the vertical stress, and % is the horizontal stress). It is found that the intermediate principal strain, ε2, increases from negative to positive value with the increase of parameter b from zero to unity under a constant minor principal stress. The minor principal strain, ε3, is always negative. This implies that the specimen exhibits an evident anisotropy. The relationship between b and friction angle obtained from the tests is different from that predicted by LADE-DUNCAN and MATSUOKA-NAKAI criteria. Based on the test results, an empirical equation of g(b) that is the shape function of the failure surface on re-plane was presented. The proposed equation is verified to be reasonable by comparing the predicted results using the equation with true triaxial test results of soils, such as coarse-grained soils in this study, sands and gravels in other studies.
基金Supported by the Ministry of Education and Science of Spain (No. SUM2006-00029-C02)
文摘Soil aggregation and organic matter of soils from the pre-Pyrenean range in Catalonia (NE Spain) were studied,in order to assess their quality as carbon sinks and also to select the best soil management practices to preserve their quality.Aggregate stability,organic carbon and micromorphology were investigated.The highest amount of organic carbon was found in alluvial,deep soils (228 Mg C ha -1 ),and the lowest was in a shallow,stony soil with a low plant cover (78 Mg C ha -1 ).Subsurface horizons of degraded soils under pastures were the ones with smaller and less-stable aggregates.Fresh residues of organic matter (OM) were found mostly in interaggregate spaces.Within the aggregates there were some organic remains that were beginning to decompose,and also impregnative nodules of amorphous OM.Although OM was evenly distributed among the aggregate fractions,the larger blocky peds had more specific surface,contained less decomposed OM and had a lower organic/mineral interphase than smaller crumb aggregates,which were also more stable.Soil carbon storage was affected primarily by the OM inputs in the surface horizons.In order to store organic carbon over the mid- and long-term periods,the mechanisms favouring structuration through biological activity and creating small aggregates with intrapedal stable microporosities seemed to be the most effective.