In this paper a low-density pairwise check(LDPC) coded three-way relay system is considered, where three user nodes desire to exchange messages with the help of one relay node. Since physical-layer network coding is a...In this paper a low-density pairwise check(LDPC) coded three-way relay system is considered, where three user nodes desire to exchange messages with the help of one relay node. Since physical-layer network coding is applied, two time slots are sufficient for one round information exchange. In this paper, we present a decode-and-forward(DF) scheme based on joint LDPC decoding for three-way relay channels, where relay decoder partially decodes the network code rather than fully decodes all the user messages. Simulation results show that the new DF scheme considerably outperforms other common schemes in three-way relay fading channels.展开更多
In cellular networks, users communicate with each other through their respective base stations(BSs).Conventionally, users are assumed to be in different cells. BSs serve as decode-and-forward(DF) relay nodes to us...In cellular networks, users communicate with each other through their respective base stations(BSs).Conventionally, users are assumed to be in different cells. BSs serve as decode-and-forward(DF) relay nodes to users.In addition to this type of conventional user, we recognize that there are scenarios users who want to communicate with each other are located in the same cell. This gives rise to the scenario of intra-cell communication. In this case, a BS can behave as a two-way relay to achieve information exchange instead of using conventional DF relay.We consider a multi-cell orthogonal frequency division multiple access(OFDMA) network that comprises these two types of users. We are interested in resource allocation between them. Specifically, we jointly optimize subcarrier assignment, subcarrier pairing, and power allocation to maximize the weighted sum rate. We consider the resource allocation problem at BSs when the end users' power is fixed. We solve the problem approximately through Lagrange dual decomposition. Simulation results show that the proposed schemes outperform other existing schemes.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 61201187by the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions under Grant YETP0110+2 种基金by the Tsinghua University Initiative Scientific Research Program under Grant 20121088074by the Foundation of Zhejiang Educational Committee under Grant Y201121579by the Visiting Scholar Professional Development Project of Zhejiang Educational Committee under Grant FX2014052
文摘In this paper a low-density pairwise check(LDPC) coded three-way relay system is considered, where three user nodes desire to exchange messages with the help of one relay node. Since physical-layer network coding is applied, two time slots are sufficient for one round information exchange. In this paper, we present a decode-and-forward(DF) scheme based on joint LDPC decoding for three-way relay channels, where relay decoder partially decodes the network code rather than fully decodes all the user messages. Simulation results show that the new DF scheme considerably outperforms other common schemes in three-way relay fading channels.
基金Project supported by the Natural Science Foundation of Shandong Province,China(No.ZR2012AQ015)
文摘In cellular networks, users communicate with each other through their respective base stations(BSs).Conventionally, users are assumed to be in different cells. BSs serve as decode-and-forward(DF) relay nodes to users.In addition to this type of conventional user, we recognize that there are scenarios users who want to communicate with each other are located in the same cell. This gives rise to the scenario of intra-cell communication. In this case, a BS can behave as a two-way relay to achieve information exchange instead of using conventional DF relay.We consider a multi-cell orthogonal frequency division multiple access(OFDMA) network that comprises these two types of users. We are interested in resource allocation between them. Specifically, we jointly optimize subcarrier assignment, subcarrier pairing, and power allocation to maximize the weighted sum rate. We consider the resource allocation problem at BSs when the end users' power is fixed. We solve the problem approximately through Lagrange dual decomposition. Simulation results show that the proposed schemes outperform other existing schemes.