In non-dedicated cooperative relay networks, each node is autonomous and selfish in nature, and thus spontaneous cooperation among nodes is challenged. To stimulate the selfish node to participate in cooperation, a pr...In non-dedicated cooperative relay networks, each node is autonomous and selfish in nature, and thus spontaneous cooperation among nodes is challenged. To stimulate the selfish node to participate in cooperation, a pricing-based cooperation engine using game theory was designed. Firstly, the feasible regions of the charge price and reimbursement price were deduced. Then, the non-cooperative and cooperative games were adopted to analyze the amount of bandwidth that initiating cooperation node(ICN) forwards data through participating cooperation node(PCN) and the amount of bandwidth that PCN helps ICN to relay data. Meanwhile, the Nash equilibrium solutions of cooperation bandwidth allocations(CBAs) were obtained through geometrical interpretation. Secondly, a pricing-based cooperation engine was proposed and a cooperative communication system model with cooperation engines was depicted. Finally, an algorithm based on game theory was proposed to realize the cooperation engine. The simulation results demonstrate that, compared with the system without pricing-based incentive, the proposed system can significantly improve the ICN's metric measured by bit-per-Joule and increase the PCN's revenue.展开更多
Since the QKD network can overcome the distance limitation and expand the point-to-point QKD system to a multi-user key distribution system, some testing QKD networks have been built. However, all of this previous res...Since the QKD network can overcome the distance limitation and expand the point-to-point QKD system to a multi-user key distribution system, some testing QKD networks have been built. However, all of this previous research seldom focused on the routing mechanism of QKD network in detail. Therefore, this paper focuses on the routing issue in trust relaying QKD network, builds a model of the trust relaying QKD network and proposes a secret-key-aware routing method. In our method, a dynamic model for the residual local key is proposed to forecast the residual local key quantity of each QKD link more accurately, and the cost of QKD link and relaying path are defined by multiple affecting factors, e.g. the generation, consumption rate and the local key depletion index. The proposed method is implemented and evaluated in a simulation environment. The simulation results show that our routing method can increase the success rate of key exchange, make all the QKD links participate key exchange with almost equal opportunity to achieve load balance, and trade off the local key generation and consumption of each QKD link. Therefore, our proposed method can contribute to effectively improve the holistic performance of the trust relaying QKD network.展开更多
基金Project(61201143)supported by the National Natural Science Foundation of China
文摘In non-dedicated cooperative relay networks, each node is autonomous and selfish in nature, and thus spontaneous cooperation among nodes is challenged. To stimulate the selfish node to participate in cooperation, a pricing-based cooperation engine using game theory was designed. Firstly, the feasible regions of the charge price and reimbursement price were deduced. Then, the non-cooperative and cooperative games were adopted to analyze the amount of bandwidth that initiating cooperation node(ICN) forwards data through participating cooperation node(PCN) and the amount of bandwidth that PCN helps ICN to relay data. Meanwhile, the Nash equilibrium solutions of cooperation bandwidth allocations(CBAs) were obtained through geometrical interpretation. Secondly, a pricing-based cooperation engine was proposed and a cooperative communication system model with cooperation engines was depicted. Finally, an algorithm based on game theory was proposed to realize the cooperation engine. The simulation results demonstrate that, compared with the system without pricing-based incentive, the proposed system can significantly improve the ICN's metric measured by bit-per-Joule and increase the PCN's revenue.
文摘Since the QKD network can overcome the distance limitation and expand the point-to-point QKD system to a multi-user key distribution system, some testing QKD networks have been built. However, all of this previous research seldom focused on the routing mechanism of QKD network in detail. Therefore, this paper focuses on the routing issue in trust relaying QKD network, builds a model of the trust relaying QKD network and proposes a secret-key-aware routing method. In our method, a dynamic model for the residual local key is proposed to forecast the residual local key quantity of each QKD link more accurately, and the cost of QKD link and relaying path are defined by multiple affecting factors, e.g. the generation, consumption rate and the local key depletion index. The proposed method is implemented and evaluated in a simulation environment. The simulation results show that our routing method can increase the success rate of key exchange, make all the QKD links participate key exchange with almost equal opportunity to achieve load balance, and trade off the local key generation and consumption of each QKD link. Therefore, our proposed method can contribute to effectively improve the holistic performance of the trust relaying QKD network.