China is now the world’s largest producer and user of industrial fertilizers and manures. Consequently China plays a substantial role in global N cycle dynamics and in man’s disruption of the nitrogen cycle though t...China is now the world’s largest producer and user of industrial fertilizers and manures. Consequently China plays a substantial role in global N cycle dynamics and in man’s disruption of the nitrogen cycle though there are still significant uncertainties about the size and importance of emission and leaching rates. A major cause of China’s global role is the overuse of nitrogen fertilizers, which is most serious with intensive vegetable production where application rates can be up to 50% greater than crop needs, but is also a problem with wheat, rice and maize. China’s overuse of nitrogen fertiliser over the past 10-20 years has resulted in non-point source (NPS) pollution from crop production becoming a major cause of water pollution, and the situation is projected to get worse. In contrast, water pollution from point sources such as intensive livestock production and urban or industrial development is being brought more under control. The consequences for air pollution are equally serious. Emissions of nitrous oxide from fertilizers and manures may be so large that China could be responsible for 25-30% of global emissions of this damaging greenhouse gas and of the global warming resulting from it. The main national and local issues relate particularly to low fertilizer use efficiency and the losses of ammonia and NOx that lead to acid precipitation, and leaching and run-off losses that result in high nitrate levels in groundwater and eutrophication of rivers and lakes. The reasons why farmers overuse nitrogen fertilizer are complex and not fully understood. They involve agro-climate differences between provinces and counties, farming systems and farm income structures. Although there is a wide range of institutional and technological improvements that can greatly reduce this overuse rapid progress in reducing NPS is unlikely.展开更多
A trial of interplanting and non-interplanting villous amomum (Amomum villosum Lour.) under the canopy of Chinese fir (Cunninghamia lanceolata Hook.) at age 22 was established in Sanming, Fujian of China, and a survey...A trial of interplanting and non-interplanting villous amomum (Amomum villosum Lour.) under the canopy of Chinese fir (Cunninghamia lanceolata Hook.) at age 22 was established in Sanming, Fujian of China, and a survey on soil fertility was carried out 10 years after its establishment. Compared with the control (non-interplanting), the properties of soil humus in agroforestry system were ameliorated, with a higher level of humification and resynthesis of organic detritus. The soil microbial population and enzymatic activities were both higher under the influence of villous amomum. Both the nutrient supplying and nutrient conserving capacities of the soil were improved. This agroforestry system exhibited an advantage of improved soil fertility as well as an accelerated growth of Chinese fir, it was, therefore, a sustainable management system suited for Chinese fir in South China.展开更多
Declining soil fertility has become an increasingly urgent problem and gathering firewood is one of the important contributing factors.Due to the excessive exploitation of natural resources especially for firewood,the...Declining soil fertility has become an increasingly urgent problem and gathering firewood is one of the important contributing factors.Due to the excessive exploitation of natural resources especially for firewood,the red soil hilly region has become one of the most vulnerable eco-environment regions in China.The pressure of gathering firewood on forestland soil fertility in forestland has been generally estimated by geographical information system and questionnaire method in this paper in the Zhuxi watershed of Changting County,Fujian Province,China,a typical representative in the red soil hilly region of China.The results of this study show that:i) Forestland soil fertility is negatively affected by gathering firewood,which is more intensive in the integrated buffer zone than out of zone.The forestland soil fertility grade,OM,total N,available N,total P,available P,total K,available K,pH and <2μm clay content are lower and bulk density is higher in the integrated buffer zone than those out.ii) The forestland soil fertility grade,OM,total N,available N,total P,available P,total K,available K,pH and <2μm clay content tend to be lower and bulk density tends to be higher in the village buffer zones than those out in Datian,Chenguang and Youfang respectively.iii) The population density,economic development and terrain might be the key driving forces contributing to the relationship between gathering firewood and forestland soil fertility.Higher population density leads to more massive firewood collection and imposes more pressure on forestland soil fertility.Decreasing the use of firewood stove may reduce firewood consumption and thus release the pressure of gathering firewood on forestland soil fertility.Terrain affects the accessibility to gathering firewood thus affects forestland soil fertility.Other driving forces influencing the relationship between gathering firewood and forestland soil fertility should also be taken into account in the further study.展开更多
Spatial variability of soil organic carbon (SOC) of different land use patterns and soil types was examined in a county-wide red soil region of South China,using six sampling densities,14,34,68,130,255,and 525 samples...Spatial variability of soil organic carbon (SOC) of different land use patterns and soil types was examined in a county-wide red soil region of South China,using six sampling densities,14,34,68,130,255,and 525 samples designed by the method of grid sampling in 6 different grid sizes,labeled as D14,D34,D68,D130,D255,and D525,respectively.The results showed that the coefficients of variation (CVs) of SOC decreased gradually from 62.8% to 47.4% with the increase in soil sampling densities.The SOC CVs in the paddy field change slightly from 30.8% to 28.7%,while those of the dry farmland and forest land decreased remarkably from 58.1% to 48.7% and from 99.3% to 64.4%,respectively.The SOC CVs of the paddy soil change slightly,while those of red soil decreased remarkably from 82.8% to 63.9%.About 604,500,and 353 (P < 0.05) samples would be needed a number of years later if the SOC change was supposedly 1.52 g kg-1,based on the CVs of SOC acquired from the present sampling densities of D14,D68,and D525,respectively.Moreover,based on the same SOC change and the present time CVs at D255,the ratio of samples needed for paddy field,dry farmland,and forest land should be 1:0.81:3.33,while the actual corresponding ratio in an equal interval grid sampling was 1:0.74:0.46.These indicated that the sampling density had important effect on the detection of SOC variability in the county-wide region,the equal interval grid sampling was not efficient enough,and the respective CV of each land use or soil type should be fully considered when determining the sampling number in the future.展开更多
基金Project supported by the Canadian International Development Agency, Canada and the Chinese Academy of Sciences,China (No. KZCX2-413).
文摘China is now the world’s largest producer and user of industrial fertilizers and manures. Consequently China plays a substantial role in global N cycle dynamics and in man’s disruption of the nitrogen cycle though there are still significant uncertainties about the size and importance of emission and leaching rates. A major cause of China’s global role is the overuse of nitrogen fertilizers, which is most serious with intensive vegetable production where application rates can be up to 50% greater than crop needs, but is also a problem with wheat, rice and maize. China’s overuse of nitrogen fertiliser over the past 10-20 years has resulted in non-point source (NPS) pollution from crop production becoming a major cause of water pollution, and the situation is projected to get worse. In contrast, water pollution from point sources such as intensive livestock production and urban or industrial development is being brought more under control. The consequences for air pollution are equally serious. Emissions of nitrous oxide from fertilizers and manures may be so large that China could be responsible for 25-30% of global emissions of this damaging greenhouse gas and of the global warming resulting from it. The main national and local issues relate particularly to low fertilizer use efficiency and the losses of ammonia and NOx that lead to acid precipitation, and leaching and run-off losses that result in high nitrate levels in groundwater and eutrophication of rivers and lakes. The reasons why farmers overuse nitrogen fertilizer are complex and not fully understood. They involve agro-climate differences between provinces and counties, farming systems and farm income structures. Although there is a wide range of institutional and technological improvements that can greatly reduce this overuse rapid progress in reducing NPS is unlikely.
基金Project partly supported by the Natural Science Foundation of Fujian Province.
文摘A trial of interplanting and non-interplanting villous amomum (Amomum villosum Lour.) under the canopy of Chinese fir (Cunninghamia lanceolata Hook.) at age 22 was established in Sanming, Fujian of China, and a survey on soil fertility was carried out 10 years after its establishment. Compared with the control (non-interplanting), the properties of soil humus in agroforestry system were ameliorated, with a higher level of humification and resynthesis of organic detritus. The soil microbial population and enzymatic activities were both higher under the influence of villous amomum. Both the nutrient supplying and nutrient conserving capacities of the soil were improved. This agroforestry system exhibited an advantage of improved soil fertility as well as an accelerated growth of Chinese fir, it was, therefore, a sustainable management system suited for Chinese fir in South China.
基金funded by the National Natural Science Foundation of China (Grant Nos.40871141,41001170,41171232)
文摘Declining soil fertility has become an increasingly urgent problem and gathering firewood is one of the important contributing factors.Due to the excessive exploitation of natural resources especially for firewood,the red soil hilly region has become one of the most vulnerable eco-environment regions in China.The pressure of gathering firewood on forestland soil fertility in forestland has been generally estimated by geographical information system and questionnaire method in this paper in the Zhuxi watershed of Changting County,Fujian Province,China,a typical representative in the red soil hilly region of China.The results of this study show that:i) Forestland soil fertility is negatively affected by gathering firewood,which is more intensive in the integrated buffer zone than out of zone.The forestland soil fertility grade,OM,total N,available N,total P,available P,total K,available K,pH and &lt;2μm clay content are lower and bulk density is higher in the integrated buffer zone than those out.ii) The forestland soil fertility grade,OM,total N,available N,total P,available P,total K,available K,pH and &lt;2μm clay content tend to be lower and bulk density tends to be higher in the village buffer zones than those out in Datian,Chenguang and Youfang respectively.iii) The population density,economic development and terrain might be the key driving forces contributing to the relationship between gathering firewood and forestland soil fertility.Higher population density leads to more massive firewood collection and imposes more pressure on forestland soil fertility.Decreasing the use of firewood stove may reduce firewood consumption and thus release the pressure of gathering firewood on forestland soil fertility.Terrain affects the accessibility to gathering firewood thus affects forestland soil fertility.Other driving forces influencing the relationship between gathering firewood and forestland soil fertility should also be taken into account in the further study.
基金Supported by the National Natural Science Foundation of China (Nos. 40921061 and 40701070)the Knowledge Innovation Program of the Chinese Academy of Sciences (Nos. KSCX1-YW-09-02,KZCX2-YW-Q1-07,and KZCX2-YW-Q1-15)
文摘Spatial variability of soil organic carbon (SOC) of different land use patterns and soil types was examined in a county-wide red soil region of South China,using six sampling densities,14,34,68,130,255,and 525 samples designed by the method of grid sampling in 6 different grid sizes,labeled as D14,D34,D68,D130,D255,and D525,respectively.The results showed that the coefficients of variation (CVs) of SOC decreased gradually from 62.8% to 47.4% with the increase in soil sampling densities.The SOC CVs in the paddy field change slightly from 30.8% to 28.7%,while those of the dry farmland and forest land decreased remarkably from 58.1% to 48.7% and from 99.3% to 64.4%,respectively.The SOC CVs of the paddy soil change slightly,while those of red soil decreased remarkably from 82.8% to 63.9%.About 604,500,and 353 (P < 0.05) samples would be needed a number of years later if the SOC change was supposedly 1.52 g kg-1,based on the CVs of SOC acquired from the present sampling densities of D14,D68,and D525,respectively.Moreover,based on the same SOC change and the present time CVs at D255,the ratio of samples needed for paddy field,dry farmland,and forest land should be 1:0.81:3.33,while the actual corresponding ratio in an equal interval grid sampling was 1:0.74:0.46.These indicated that the sampling density had important effect on the detection of SOC variability in the county-wide region,the equal interval grid sampling was not efficient enough,and the respective CV of each land use or soil type should be fully considered when determining the sampling number in the future.