A long-term fertilizer experiment on dry land of the Loess Plateau, northwestChina, has been conducted since 1984 to study the distribution and accumulation of NO_3-N down to adepth of 400 cm in the profile of a coars...A long-term fertilizer experiment on dry land of the Loess Plateau, northwestChina, has been conducted since 1984 to study the distribution and accumulation of NO_3-N down to adepth of 400 cm in the profile of a coarse-textured dark loessial soilafter continuous winter wheatcropping. Thirteen fertilizer treatments consisted of four levels of N and P applied alone or incombination. Annual N and P (P_2O_5) rates were 0, 45, 90, 135 and 180 kg ha^(-1). After 15successive cropping cycles, the soil samples were taken from each treatment for analysis of NO_3-Nconcentration. The results showed that NO_3-N distribution in the soil profile was quite differentamong the treatments. The application of fertilizer N alone resulted in higher NO_3-N concentrationin the soil profile than the combined application of N and P, showing that application of P couldgreatly reduce the NO_3-N accumulation. With an annual application of 180 kg N ha^(-1) alone, a peakin NO_3-N accumulation occurred at 140 cm soildepth, and the maximum NO_3-N concentration in thesoils was 67.92 mg kg^(-1). The amount of NO_3-N accumulated in the soil profile decreased as thecumulative N uptake by the winter wheat increased. Application of a large amount of N resulted inlowerN recoveries in winter wheat and greater NO_3-N accumulation in soil profile. KO_3-N did notenter underground water in the study region; therefore, there is no danger of underground waterpollution. Amount of NO_3-N accumulation can be predicted by an equation according to annual N and Prates based on the results of this experiment.展开更多
The deteriorating water quality in the Taihu Lake Basin has attracted widespread attention for many years, and is correlated with a sharp increase in the quantity of pollutant discharge such as agricultural fertilizer...The deteriorating water quality in the Taihu Lake Basin has attracted widespread attention for many years, and is correlated with a sharp increase in the quantity of pollutant discharge such as agricultural fertilizers and industrial wastewater. In this study, several factors were selected for evaluating and regionalizing the water environmental capacity by ArcG1S spatial analysis, including geomor- phologic characteristics, water quality goals, water body accessibility, water-dilution channels, and current water quality. Then, the spa- tial optimization of agriculture and industry was adjusted through overlay analysis, based on the balance between industrial space and water environmental capacity. The results show that the water environmental capacity gradually decreases from the west to the east, in contrast, the pollution caused by industrial and agricultural clustering is distributes along Taihu Lake, Gehu Lake and urban districts. The analysis of the agricultural space focuses on optimizing key protected areas of the Taihu Lake Basin, and the shores of Gehu Lake, optimally adjusting the second protected areas of the Taihu Lake Basin, and generally adjusting the urban areas of Changzhou and Wuxi cities. The analysis of industrial space focuses on optimizing the downtowns of Changzhou and Wuxi cities, optimally adjusting key protected areas and second protected areas of the Taihu Lake Basin, and generally adjusting the south and southwest of Gehu Lake. Lastly, some schemes of industrial and agricultural layouts and policies for the direction of industrial and agricultural development were proposed, reflecting a correlation between industry and agriculture and the water environment.展开更多
A trial of interplanting and non-interplanting villous amomum (Amomum villosum Lour.) under the canopy of Chinese fir (Cunninghamia lanceolata Hook.) at age 22 was established in Sanming, Fujian of China, and a survey...A trial of interplanting and non-interplanting villous amomum (Amomum villosum Lour.) under the canopy of Chinese fir (Cunninghamia lanceolata Hook.) at age 22 was established in Sanming, Fujian of China, and a survey on soil fertility was carried out 10 years after its establishment. Compared with the control (non-interplanting), the properties of soil humus in agroforestry system were ameliorated, with a higher level of humification and resynthesis of organic detritus. The soil microbial population and enzymatic activities were both higher under the influence of villous amomum. Both the nutrient supplying and nutrient conserving capacities of the soil were improved. This agroforestry system exhibited an advantage of improved soil fertility as well as an accelerated growth of Chinese fir, it was, therefore, a sustainable management system suited for Chinese fir in South China.展开更多
Declining soil fertility has become an increasingly urgent problem and gathering firewood is one of the important contributing factors.Due to the excessive exploitation of natural resources especially for firewood,the...Declining soil fertility has become an increasingly urgent problem and gathering firewood is one of the important contributing factors.Due to the excessive exploitation of natural resources especially for firewood,the red soil hilly region has become one of the most vulnerable eco-environment regions in China.The pressure of gathering firewood on forestland soil fertility in forestland has been generally estimated by geographical information system and questionnaire method in this paper in the Zhuxi watershed of Changting County,Fujian Province,China,a typical representative in the red soil hilly region of China.The results of this study show that:i) Forestland soil fertility is negatively affected by gathering firewood,which is more intensive in the integrated buffer zone than out of zone.The forestland soil fertility grade,OM,total N,available N,total P,available P,total K,available K,pH and <2μm clay content are lower and bulk density is higher in the integrated buffer zone than those out.ii) The forestland soil fertility grade,OM,total N,available N,total P,available P,total K,available K,pH and <2μm clay content tend to be lower and bulk density tends to be higher in the village buffer zones than those out in Datian,Chenguang and Youfang respectively.iii) The population density,economic development and terrain might be the key driving forces contributing to the relationship between gathering firewood and forestland soil fertility.Higher population density leads to more massive firewood collection and imposes more pressure on forestland soil fertility.Decreasing the use of firewood stove may reduce firewood consumption and thus release the pressure of gathering firewood on forestland soil fertility.Terrain affects the accessibility to gathering firewood thus affects forestland soil fertility.Other driving forces influencing the relationship between gathering firewood and forestland soil fertility should also be taken into account in the further study.展开更多
Intensive management of planted forests may result in soil degradation and decline in timber yield with successive rotations. Biochars may be beneficial for plant production, nutrient uptake and greenhouse gas mitigat...Intensive management of planted forests may result in soil degradation and decline in timber yield with successive rotations. Biochars may be beneficial for plant production, nutrient uptake and greenhouse gas mitigation. Biochar properties vary widely and are known to be highly dependent on feedstocks, but their effects on planted forest ecosystem are elusive. This study investigated the effects of chicken manure biochar, sawdust biochar and their feedstocks on 2-year-old Pinus elliottii growth, fertilizer N use efficiency (NUE), soil N20 and CH4 emissions, and C storage in an acidic forest soil in a subtropical area of China for one year. The soil was mixed with materials in a total of 8 treatments: non-amended control (CK); sawdust at 2.16 kg m^-2 (SD); chicken manure at 1.26 kg m^-2 (CM); sawdust biochar at 2.4 kg m^-2 (SDB); chicken manure biochar at 2.4 kg m^-2 (CMB); 15N-fertilizer alone (10.23 atom% 15N) (NF); sawdust biochar at 2.4 kg m^-2 plus lSN-fertilizer (SDBN) and chicken manure biochar at 2.4 kg m^-2 plus 15N-fertilizer (CMBN). Results showed that the CMB treatment increased P. elliottii net primary production (aboveground biomass plus litterfall) and annual net C fixation (ANCF) by about 180% and 157%, respectively, while the the SDB treatment had little effect on P. eUiottii growth. The 15N stable isotope labelling technique revealed that fertilizer NUE was 22.7% in CK, 25.5% in the NF treatment, and 37.0% in the CMB treatment. Chicken manure biochar significantly increased soil pH, total N, total P, total K, available P and available K. Only 2% of the N in chicken manure biochar was available to the tree. The soil N20 emission and CH4 uptake showed no significant differences among the treatments. The apparent C losses from the SD and CM treatments were 35% and 61%, respectively; while those from the CMB and SDB treatments were negligible. These demonstrated that it is crucial to consider biochar properties while evaluating their effects on plant growth and C sequestration.展开更多
Many recently developed N management strategies have been extremely successful in improving N use efficiency. How- ever, attempts to further increase grain yields have had limited success. Field experiments were condu...Many recently developed N management strategies have been extremely successful in improving N use efficiency. How- ever, attempts to further increase grain yields have had limited success. Field experiments were conducted in 2007 and 2008 at four sites to evaluate the effect of an in-season root-zone N management strategy on maize (Zea mays L.). According to the in-season root-zone N management, the optimal N rate (ONR) was determined by subtracting measured soil mineral N (NHa+-N and NO3-N) in the root zone from N target values. Other treatments included a control without N fertilization, 70% of ONR~ 130% of ONR, and recommended N rate (RNR) by agronomists in China that have been shown to approach maize yield potentials. Although apparent N recovery for the ONR treatment was significantly higher than that under RNR in 2007, grain yield declined from 13.3 to 11.0 Mg ha-1 because of an underestimation of N uptake. In 2008, N target values were adjusted to match crop uptake, and N fertilization rates were reduced from 450 kg N ha-1 for RNR to 225 to 265 kg N ha 1 for ONR. High maize yields were maintained at 12.6 to 13.5 Mg ha 1 which were twice the yield from typical farmers' practice. As a result, apparent N recovery increased from 29% to 66%, and estimated N losses decreased significantly for the ONR treatment compared to the RNR treatment. In conclusion, the in-season root-zone N management approach was able to achieve high yields, high NUE and low N losses.展开更多
Spatial variability of soil organic carbon (SOC) of different land use patterns and soil types was examined in a county-wide red soil region of South China,using six sampling densities,14,34,68,130,255,and 525 samples...Spatial variability of soil organic carbon (SOC) of different land use patterns and soil types was examined in a county-wide red soil region of South China,using six sampling densities,14,34,68,130,255,and 525 samples designed by the method of grid sampling in 6 different grid sizes,labeled as D14,D34,D68,D130,D255,and D525,respectively.The results showed that the coefficients of variation (CVs) of SOC decreased gradually from 62.8% to 47.4% with the increase in soil sampling densities.The SOC CVs in the paddy field change slightly from 30.8% to 28.7%,while those of the dry farmland and forest land decreased remarkably from 58.1% to 48.7% and from 99.3% to 64.4%,respectively.The SOC CVs of the paddy soil change slightly,while those of red soil decreased remarkably from 82.8% to 63.9%.About 604,500,and 353 (P < 0.05) samples would be needed a number of years later if the SOC change was supposedly 1.52 g kg-1,based on the CVs of SOC acquired from the present sampling densities of D14,D68,and D525,respectively.Moreover,based on the same SOC change and the present time CVs at D255,the ratio of samples needed for paddy field,dry farmland,and forest land should be 1:0.81:3.33,while the actual corresponding ratio in an equal interval grid sampling was 1:0.74:0.46.These indicated that the sampling density had important effect on the detection of SOC variability in the county-wide region,the equal interval grid sampling was not efficient enough,and the respective CV of each land use or soil type should be fully considered when determining the sampling number in the future.展开更多
基金Project supported by the Chinese Academy of Sciences (No. KZCX2)the National Natural Science Foundation of China (No. 40025106).
文摘A long-term fertilizer experiment on dry land of the Loess Plateau, northwestChina, has been conducted since 1984 to study the distribution and accumulation of NO_3-N down to adepth of 400 cm in the profile of a coarse-textured dark loessial soilafter continuous winter wheatcropping. Thirteen fertilizer treatments consisted of four levels of N and P applied alone or incombination. Annual N and P (P_2O_5) rates were 0, 45, 90, 135 and 180 kg ha^(-1). After 15successive cropping cycles, the soil samples were taken from each treatment for analysis of NO_3-Nconcentration. The results showed that NO_3-N distribution in the soil profile was quite differentamong the treatments. The application of fertilizer N alone resulted in higher NO_3-N concentrationin the soil profile than the combined application of N and P, showing that application of P couldgreatly reduce the NO_3-N accumulation. With an annual application of 180 kg N ha^(-1) alone, a peakin NO_3-N accumulation occurred at 140 cm soildepth, and the maximum NO_3-N concentration in thesoils was 67.92 mg kg^(-1). The amount of NO_3-N accumulated in the soil profile decreased as thecumulative N uptake by the winter wheat increased. Application of a large amount of N resulted inlowerN recoveries in winter wheat and greater NO_3-N accumulation in soil profile. KO_3-N did notenter underground water in the study region; therefore, there is no danger of underground waterpollution. Amount of NO_3-N accumulation can be predicted by an equation according to annual N and Prates based on the results of this experiment.
基金Under the auspices of National Natural Science Foundation of China (No. 41130750,70703033)'135' Strategic Development Planning Project of Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences (No. 2012135006)
文摘The deteriorating water quality in the Taihu Lake Basin has attracted widespread attention for many years, and is correlated with a sharp increase in the quantity of pollutant discharge such as agricultural fertilizers and industrial wastewater. In this study, several factors were selected for evaluating and regionalizing the water environmental capacity by ArcG1S spatial analysis, including geomor- phologic characteristics, water quality goals, water body accessibility, water-dilution channels, and current water quality. Then, the spa- tial optimization of agriculture and industry was adjusted through overlay analysis, based on the balance between industrial space and water environmental capacity. The results show that the water environmental capacity gradually decreases from the west to the east, in contrast, the pollution caused by industrial and agricultural clustering is distributes along Taihu Lake, Gehu Lake and urban districts. The analysis of the agricultural space focuses on optimizing key protected areas of the Taihu Lake Basin, and the shores of Gehu Lake, optimally adjusting the second protected areas of the Taihu Lake Basin, and generally adjusting the urban areas of Changzhou and Wuxi cities. The analysis of industrial space focuses on optimizing the downtowns of Changzhou and Wuxi cities, optimally adjusting key protected areas and second protected areas of the Taihu Lake Basin, and generally adjusting the south and southwest of Gehu Lake. Lastly, some schemes of industrial and agricultural layouts and policies for the direction of industrial and agricultural development were proposed, reflecting a correlation between industry and agriculture and the water environment.
基金Project partly supported by the Natural Science Foundation of Fujian Province.
文摘A trial of interplanting and non-interplanting villous amomum (Amomum villosum Lour.) under the canopy of Chinese fir (Cunninghamia lanceolata Hook.) at age 22 was established in Sanming, Fujian of China, and a survey on soil fertility was carried out 10 years after its establishment. Compared with the control (non-interplanting), the properties of soil humus in agroforestry system were ameliorated, with a higher level of humification and resynthesis of organic detritus. The soil microbial population and enzymatic activities were both higher under the influence of villous amomum. Both the nutrient supplying and nutrient conserving capacities of the soil were improved. This agroforestry system exhibited an advantage of improved soil fertility as well as an accelerated growth of Chinese fir, it was, therefore, a sustainable management system suited for Chinese fir in South China.
基金funded by the National Natural Science Foundation of China (Grant Nos.40871141,41001170,41171232)
文摘Declining soil fertility has become an increasingly urgent problem and gathering firewood is one of the important contributing factors.Due to the excessive exploitation of natural resources especially for firewood,the red soil hilly region has become one of the most vulnerable eco-environment regions in China.The pressure of gathering firewood on forestland soil fertility in forestland has been generally estimated by geographical information system and questionnaire method in this paper in the Zhuxi watershed of Changting County,Fujian Province,China,a typical representative in the red soil hilly region of China.The results of this study show that:i) Forestland soil fertility is negatively affected by gathering firewood,which is more intensive in the integrated buffer zone than out of zone.The forestland soil fertility grade,OM,total N,available N,total P,available P,total K,available K,pH and &lt;2μm clay content are lower and bulk density is higher in the integrated buffer zone than those out.ii) The forestland soil fertility grade,OM,total N,available N,total P,available P,total K,available K,pH and &lt;2μm clay content tend to be lower and bulk density tends to be higher in the village buffer zones than those out in Datian,Chenguang and Youfang respectively.iii) The population density,economic development and terrain might be the key driving forces contributing to the relationship between gathering firewood and forestland soil fertility.Higher population density leads to more massive firewood collection and imposes more pressure on forestland soil fertility.Decreasing the use of firewood stove may reduce firewood consumption and thus release the pressure of gathering firewood on forestland soil fertility.Terrain affects the accessibility to gathering firewood thus affects forestland soil fertility.Other driving forces influencing the relationship between gathering firewood and forestland soil fertility should also be taken into account in the further study.
基金supported by the National Natural Science Foundation of China(No.NFSC-41171191)the Special Agricultural Science and Technology Project of China(No.201503137)+2 种基金the Science and Technology Supporting Project of China(No.2013BAD11B01)the Knowledge Innovation Program of Chinese Academy of Sciences(No.KZCX2-EW-409)the Science and Technology Supporting Project of Jiangsu Province,China(No.BE2013451)
文摘Intensive management of planted forests may result in soil degradation and decline in timber yield with successive rotations. Biochars may be beneficial for plant production, nutrient uptake and greenhouse gas mitigation. Biochar properties vary widely and are known to be highly dependent on feedstocks, but their effects on planted forest ecosystem are elusive. This study investigated the effects of chicken manure biochar, sawdust biochar and their feedstocks on 2-year-old Pinus elliottii growth, fertilizer N use efficiency (NUE), soil N20 and CH4 emissions, and C storage in an acidic forest soil in a subtropical area of China for one year. The soil was mixed with materials in a total of 8 treatments: non-amended control (CK); sawdust at 2.16 kg m^-2 (SD); chicken manure at 1.26 kg m^-2 (CM); sawdust biochar at 2.4 kg m^-2 (SDB); chicken manure biochar at 2.4 kg m^-2 (CMB); 15N-fertilizer alone (10.23 atom% 15N) (NF); sawdust biochar at 2.4 kg m^-2 plus lSN-fertilizer (SDBN) and chicken manure biochar at 2.4 kg m^-2 plus 15N-fertilizer (CMBN). Results showed that the CMB treatment increased P. elliottii net primary production (aboveground biomass plus litterfall) and annual net C fixation (ANCF) by about 180% and 157%, respectively, while the the SDB treatment had little effect on P. eUiottii growth. The 15N stable isotope labelling technique revealed that fertilizer NUE was 22.7% in CK, 25.5% in the NF treatment, and 37.0% in the CMB treatment. Chicken manure biochar significantly increased soil pH, total N, total P, total K, available P and available K. Only 2% of the N in chicken manure biochar was available to the tree. The soil N20 emission and CH4 uptake showed no significant differences among the treatments. The apparent C losses from the SD and CM treatments were 35% and 61%, respectively; while those from the CMB and SDB treatments were negligible. These demonstrated that it is crucial to consider biochar properties while evaluating their effects on plant growth and C sequestration.
基金Supported by the National Basic Research Program (973 Program) of China (No. 2009CB118606)the Special Fund for Agriculture Profession of China (No. 200803030)the National Key Technologies Research and Development Program of China during the 11th Five-Year Plan Period (No. 2006BAD25B02)
文摘Many recently developed N management strategies have been extremely successful in improving N use efficiency. How- ever, attempts to further increase grain yields have had limited success. Field experiments were conducted in 2007 and 2008 at four sites to evaluate the effect of an in-season root-zone N management strategy on maize (Zea mays L.). According to the in-season root-zone N management, the optimal N rate (ONR) was determined by subtracting measured soil mineral N (NHa+-N and NO3-N) in the root zone from N target values. Other treatments included a control without N fertilization, 70% of ONR~ 130% of ONR, and recommended N rate (RNR) by agronomists in China that have been shown to approach maize yield potentials. Although apparent N recovery for the ONR treatment was significantly higher than that under RNR in 2007, grain yield declined from 13.3 to 11.0 Mg ha-1 because of an underestimation of N uptake. In 2008, N target values were adjusted to match crop uptake, and N fertilization rates were reduced from 450 kg N ha-1 for RNR to 225 to 265 kg N ha 1 for ONR. High maize yields were maintained at 12.6 to 13.5 Mg ha 1 which were twice the yield from typical farmers' practice. As a result, apparent N recovery increased from 29% to 66%, and estimated N losses decreased significantly for the ONR treatment compared to the RNR treatment. In conclusion, the in-season root-zone N management approach was able to achieve high yields, high NUE and low N losses.
基金Supported by the National Natural Science Foundation of China (Nos. 40921061 and 40701070)the Knowledge Innovation Program of the Chinese Academy of Sciences (Nos. KSCX1-YW-09-02,KZCX2-YW-Q1-07,and KZCX2-YW-Q1-15)
文摘Spatial variability of soil organic carbon (SOC) of different land use patterns and soil types was examined in a county-wide red soil region of South China,using six sampling densities,14,34,68,130,255,and 525 samples designed by the method of grid sampling in 6 different grid sizes,labeled as D14,D34,D68,D130,D255,and D525,respectively.The results showed that the coefficients of variation (CVs) of SOC decreased gradually from 62.8% to 47.4% with the increase in soil sampling densities.The SOC CVs in the paddy field change slightly from 30.8% to 28.7%,while those of the dry farmland and forest land decreased remarkably from 58.1% to 48.7% and from 99.3% to 64.4%,respectively.The SOC CVs of the paddy soil change slightly,while those of red soil decreased remarkably from 82.8% to 63.9%.About 604,500,and 353 (P < 0.05) samples would be needed a number of years later if the SOC change was supposedly 1.52 g kg-1,based on the CVs of SOC acquired from the present sampling densities of D14,D68,and D525,respectively.Moreover,based on the same SOC change and the present time CVs at D255,the ratio of samples needed for paddy field,dry farmland,and forest land should be 1:0.81:3.33,while the actual corresponding ratio in an equal interval grid sampling was 1:0.74:0.46.These indicated that the sampling density had important effect on the detection of SOC variability in the county-wide region,the equal interval grid sampling was not efficient enough,and the respective CV of each land use or soil type should be fully considered when determining the sampling number in the future.