期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于电子鼻的深度卷积神经网络茯苓产地分类方法
被引量:
2
1
作者
徐昊
章检明
+3 位作者
王中鹏
张丽娟
迟梁
何成
《传感器与微系统》
CSCD
北大核心
2023年第12期138-141,共4页
本文采用自研电子鼻系统,实现6个产地的茯苓气味样本的检测,根据采集得到的样本数据集,提出并优化了适用于茯苓产地分类的卷积神经网络—长短期记忆网络(CNN-LSTM)模型,同时与支持向量机(SVM)模型、CNN模型、LSTM模型进行对比,识别率提...
本文采用自研电子鼻系统,实现6个产地的茯苓气味样本的检测,根据采集得到的样本数据集,提出并优化了适用于茯苓产地分类的卷积神经网络—长短期记忆网络(CNN-LSTM)模型,同时与支持向量机(SVM)模型、CNN模型、LSTM模型进行对比,识别率提高6%以上。在实际样本检测中,适用于茯苓产地分类的CNN-LSTM模型识别准确率为81.9%,优化后的CNN-LSTM模型识别准确率达到了88.9%,且优化后的神经网络能够更快、更好地从电子鼻数据中提取特征。
展开更多
关键词
电子鼻
深度学习
中药产地区分
下载PDF
职称材料
题名
基于电子鼻的深度卷积神经网络茯苓产地分类方法
被引量:
2
1
作者
徐昊
章检明
王中鹏
张丽娟
迟梁
何成
机构
浙江科技学院信息与电子工程学院
浙江省农业科学院食品科学研究所
出处
《传感器与微系统》
CSCD
北大核心
2023年第12期138-141,共4页
基金
浙江省“三农九方”科技协作计划资助项目(2023SNJF007)。
文摘
本文采用自研电子鼻系统,实现6个产地的茯苓气味样本的检测,根据采集得到的样本数据集,提出并优化了适用于茯苓产地分类的卷积神经网络—长短期记忆网络(CNN-LSTM)模型,同时与支持向量机(SVM)模型、CNN模型、LSTM模型进行对比,识别率提高6%以上。在实际样本检测中,适用于茯苓产地分类的CNN-LSTM模型识别准确率为81.9%,优化后的CNN-LSTM模型识别准确率达到了88.9%,且优化后的神经网络能够更快、更好地从电子鼻数据中提取特征。
关键词
电子鼻
深度学习
中药产地区分
Keywords
electronic nose(E-nose)
deep learning
origin classification of traditional Chinese medicine
分类号
TP393 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于电子鼻的深度卷积神经网络茯苓产地分类方法
徐昊
章检明
王中鹏
张丽娟
迟梁
何成
《传感器与微系统》
CSCD
北大核心
2023
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部