Horizontal winds in the mesosphere (80-100 km) were measured by meteor radar in Wuhan, China (30° N, 114° E) over a 45-month interval in 2002-2005 and the data examined to investigate the monthly mean be...Horizontal winds in the mesosphere (80-100 km) were measured by meteor radar in Wuhan, China (30° N, 114° E) over a 45-month interval in 2002-2005 and the data examined to investigate the monthly mean behavior of the Ol tide. A clear seasonal variation in amplitude of the O1 tide ranging from -0.3 m/s to 2.6 m/s was observed. In most months, the northward and eastward components differed by about 7 lunar hours with the eastward component leading. Comparison of the amplitudes of the M2 and O1 tides suggests the O1 tide is quite stronger over Wuhan, China. The amplitude ratio of the O1 tide to the M2 tide is quite stronger than that the gravitational potential being 0.41. The vertical wavelength of the O1 tide differs on a monthly basis. Height profiles of the O1 tide showed obvious height variation. The O1 tide is stronger in January and July. In different month, the vertical wavelength for the O1 tide changes considerably at the same height. The year's variation trend of the northward and eastward components is very similar in both phase and amplitude.展开更多
Fabry-Perot Interferometer(FPI) has been used widely for wind measurements of the middle and upper atmosphere.To date, most of FPIs have been based on full-closed circular fringe, which needs 15–25 min to obtain a gr...Fabry-Perot Interferometer(FPI) has been used widely for wind measurements of the middle and upper atmosphere.To date, most of FPIs have been based on full-closed circular fringe, which needs 15–25 min to obtain a group of wind velocity(zonal and meridional). However, it is hard to improve the temporal resolution because full-closed circular fringe in several directions cannot be easily imaged onto the same Charge-Coupled Device(CCD) with enough airglow intensity. In this paper, a data processing method is proposed for non-full circular fringe of FPI, which can support CCD with enough area of observations in several directions simultaneously. The method is focused on the center determination of non-full fringe. It includes radial cross-section, peak coordinate determination, and center calculation. Based on the calculated center, the fringe is annular summed. Then its radius is determined subsequently using Gaussian fitting. Finally, the wind is retrieved from the fringe radius. For validation, fringes from two ground-based FPIs were used, which are deployed in Kelan(38.71°N, 111.58°E) and Xinglong(40.40°N, 117.59°E) in China. The results retrieved from non-full fringes of FPIs were compared with that from full-closed circular fringe. The averaged wind deviation between them demonstrates reasonable difference with 5.38 ms^-(1) for 892.0 nm airglow emission, 5.81 ms^-(1) for 630.0 nm emission, and 3.03 ms^-(1) for 557.7 nm emission. Besides, wind results of Xinglong FPI are compared roughly with measurements of meteor radar which is deployed in Ming Tombs of Beijing(40.3°N,116.2°E). Good agreement demonstrates that this method is robust enough for FPI wind retrieval of mesosphere and thermosphere.展开更多
基金Acknowledgements This research was supported by National Natural Science Foundation of China (41104095)
文摘Horizontal winds in the mesosphere (80-100 km) were measured by meteor radar in Wuhan, China (30° N, 114° E) over a 45-month interval in 2002-2005 and the data examined to investigate the monthly mean behavior of the Ol tide. A clear seasonal variation in amplitude of the O1 tide ranging from -0.3 m/s to 2.6 m/s was observed. In most months, the northward and eastward components differed by about 7 lunar hours with the eastward component leading. Comparison of the amplitudes of the M2 and O1 tides suggests the O1 tide is quite stronger over Wuhan, China. The amplitude ratio of the O1 tide to the M2 tide is quite stronger than that the gravitational potential being 0.41. The vertical wavelength of the O1 tide differs on a monthly basis. Height profiles of the O1 tide showed obvious height variation. The O1 tide is stronger in January and July. In different month, the vertical wavelength for the O1 tide changes considerably at the same height. The year's variation trend of the northward and eastward components is very similar in both phase and amplitude.
基金supported by National Space Science Center (Xinglong FPI data)Institute of Geology and Geophysics (meteor radar data)Beijing Municipal Science and Technology Commission (Grant No. Z151100003615001)
文摘Fabry-Perot Interferometer(FPI) has been used widely for wind measurements of the middle and upper atmosphere.To date, most of FPIs have been based on full-closed circular fringe, which needs 15–25 min to obtain a group of wind velocity(zonal and meridional). However, it is hard to improve the temporal resolution because full-closed circular fringe in several directions cannot be easily imaged onto the same Charge-Coupled Device(CCD) with enough airglow intensity. In this paper, a data processing method is proposed for non-full circular fringe of FPI, which can support CCD with enough area of observations in several directions simultaneously. The method is focused on the center determination of non-full fringe. It includes radial cross-section, peak coordinate determination, and center calculation. Based on the calculated center, the fringe is annular summed. Then its radius is determined subsequently using Gaussian fitting. Finally, the wind is retrieved from the fringe radius. For validation, fringes from two ground-based FPIs were used, which are deployed in Kelan(38.71°N, 111.58°E) and Xinglong(40.40°N, 117.59°E) in China. The results retrieved from non-full fringes of FPIs were compared with that from full-closed circular fringe. The averaged wind deviation between them demonstrates reasonable difference with 5.38 ms^-(1) for 892.0 nm airglow emission, 5.81 ms^-(1) for 630.0 nm emission, and 3.03 ms^-(1) for 557.7 nm emission. Besides, wind results of Xinglong FPI are compared roughly with measurements of meteor radar which is deployed in Ming Tombs of Beijing(40.3°N,116.2°E). Good agreement demonstrates that this method is robust enough for FPI wind retrieval of mesosphere and thermosphere.