期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Formation of mesophase microbeads from bulk mesophase pitch induced by fullerene
1
作者 CHEN Wen-sheng LIU Lan-tao +5 位作者 WANG Zheng DUAN Chun-feng ZHANG Xing-wei MA Zhao-kun CHEN Xiao-hong SONG Huai-he 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第4期645-654,共10页
A transformation of naphthalene-based coalescenced mesophase pitch(NMP)to mesophase microbeads was achieved by heating a mixture of NMP and fullerene(C_(60)).This is different from the conventional process of the liqu... A transformation of naphthalene-based coalescenced mesophase pitch(NMP)to mesophase microbeads was achieved by heating a mixture of NMP and fullerene(C_(60)).This is different from the conventional process of the liquid-phase carbonization of isotropic pitch to the emergence of carbon microbeads in the matrix and finally their growth to form a 100%anisotropic bulk meso-phase,but rather a reverse transformation.The effects of C_(60) loading and reaction temperature on the morphological transformation of mesophase were investigated by polarizing optical and scanning electron microscopies.The physical changes in the NMP induced by C_(60) were characterized by thermogravimetric analysis,Fourier transform infrared spectroscopy,X-ray diffractometry and Raman spectroscopy.The results show that the coalesced NMP can be converted to a spherical type at 300-320℃ with the addition of 5%C_(60),and the size of the mesophase microbeads increases with increasing temperature.Furthermore,a model is established to ex-plain the unique induction effect of C_(60) in the transformation process.This work makes the morphological transformation of MP con-trollable,and provides a new idea for the understanding and research of mesophase pitch. 展开更多
关键词 Reversible transformation Fullerene induction mechanism Mesophase texture π-electron-induced effect Mesophase microbeads
下载PDF
A high-capacity graphene/mesocarbon microbead composite anode for lithium-ion batteries
2
作者 Inna SMOLIANOVA Jin-long HU +2 位作者 Xin-yue ZHAO Viacheslav DEMENTIEV Ling-zhi ZHANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2020年第5期392-400,共9页
The graphene/mesocarbon microbead(MCMB)composite is assessed as an anode material with a high capacity for lithium-ion batteries.The composite electrode exhibits improved cycling stability and rate capability,deliveri... The graphene/mesocarbon microbead(MCMB)composite is assessed as an anode material with a high capacity for lithium-ion batteries.The composite electrode exhibits improved cycling stability and rate capability,delivering a high initial charge/discharge capacity of 421.4 mA·h/g/494.8 mA·h/g as well as an excellent capacity retention over 500 cycles at a current density of 40 mA/g.At a higher current density of 800 mA/g,the electrode still retains 35%of its initial capacity which exceeds the capacity retention of pure graphene or MCMB reference electrodes.Cyclic voltammetry and electrochemical impedance spectroscopy reveal that the composite electrode favors electrochemical kinetics as compared with graphene and MCMB separately.Superior electrochemical properties suggest a strong synergetic effect between highly conductive graphene and MCMB. 展开更多
关键词 GRAPHENE Mesocarbon microbead(MCMB) Composite anode materials Lithium-ion batteries
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部