期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
约束最小二乘的高光谱图像非线性解混 被引量:9
1
作者 普晗晔 王斌 夏威 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2014年第5期552-559,共8页
高光谱图像解混是高光谱数据分析的重要研究内容.在现有混合模型的基础上,提出一种新的高光谱图像非线性解混算法.通过在目标函数中引入丰度的非负及和为一约束以及非线性参数的有界约束,该算法将高光谱图像非线性解混问题转化为求解丰... 高光谱图像解混是高光谱数据分析的重要研究内容.在现有混合模型的基础上,提出一种新的高光谱图像非线性解混算法.通过在目标函数中引入丰度的非负及和为一约束以及非线性参数的有界约束,该算法将高光谱图像非线性解混问题转化为求解丰度矢量和非线性参数的约束非线性最小二乘问题,继而采用一种交替迭代优化算法求解该问题.仿真和实际高光谱数据的实验结果表明,所提出的算法有效地克服了线性解混的不足,同时具有良好的抗噪声性能,可以作为一种解决高光谱遥感图像非线性解混的有效手段. 展开更多
关键词 高光谱遥感图像 非线性解混 非线性最小二乘 丰度非负约束 丰度和为一约束 有界约束
下载PDF
基于独立分量分析的高光谱遥感图像混合像元盲分解 被引量:9
2
作者 夏威 王斌 张立明 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2011年第2期131-136,155,共7页
传统的独立分量分析并不适用于高光谱遥感图像的混合像元解混,因为图像中各端元的分布不是相互独立的.针对这一问题,提出了一种有约束的独立分量分析方法,来实现遥感图像混合像元的盲分解.通过在独立分量分析的目标函数中引入丰度非负... 传统的独立分量分析并不适用于高光谱遥感图像的混合像元解混,因为图像中各端元的分布不是相互独立的.针对这一问题,提出了一种有约束的独立分量分析方法,来实现遥感图像混合像元的盲分解.通过在独立分量分析的目标函数中引入丰度非负约束与丰度和为一约束,改变了传统的独立性假设.同时,为了更好地适用于遥感数据分析,还提出了一种自适应的丰度建模方法来描述数据的概率分布,对各种不同的遥感数据进行建模.仿真数据和真实高光谱数据的实验结果表明,作为一种无需光谱先验信息的算法,具有更高的分解精度,为高光谱遥感图像混合像元的盲分解提供了一种有效的解决手段. 展开更多
关键词 高光谱解混 独立分量分析 丰度非负约束 丰度和为一约束
下载PDF
基于差分搜索的高光谱图像解混算法 被引量:5
3
作者 张立毅 刘静光 +2 位作者 陈雷 李锵 孙彦慧 《计算机应用研究》 CSCD 北大核心 2016年第10期3177-3180,共4页
针对高光谱图像解混问题进行研究,发现高光谱图像中各个端元的分布不完全独立,不能将盲源分离方法直接应用于高光谱图像解混。为此,提出了一种基于差分搜索的高光谱图像解混算法。该算法根据高光谱图像丰度非负和丰度和为一特性构造相... 针对高光谱图像解混问题进行研究,发现高光谱图像中各个端元的分布不完全独立,不能将盲源分离方法直接应用于高光谱图像解混。为此,提出了一种基于差分搜索的高光谱图像解混算法。该算法根据高光谱图像丰度非负和丰度和为一特性构造相应的约束项,与互信息相结合作为目标函数,利用差分搜索算法对该目标函数进行优化求解来实现高光谱图像解混。仿真数据和实际数据实验表明,该算法能够有效解决高光谱图像解混问题,与已有其他算法相比,能避免陷入局部极值,提高了图像解混的精度,并且针对不含纯像元的高光谱图像具有很好的解混效果。 展开更多
关键词 高光谱图像解混 差分搜索算法 盲源分离 丰度非负约束 丰度和为一约束 互信息
下载PDF
基于布谷鸟搜索算法的高光谱图像解混算法 被引量:4
4
作者 孙彦慧 张立毅 +3 位作者 陈雷 李锵 滕建辅 刘静光 《光电子.激光》 EI CAS CSCD 北大核心 2015年第9期1806-1813,共8页
将独立成分分析(ICA)算法用于高光谱图像解混时,算法对丰度的独立性要求与实际地物分布相矛盾;同时,采用梯度算法对解混目标函数进行优化时,易收敛到局部极值点。针对上述问题,提出在非负ICA(NICA)模型的目标函数中引入丰度和为一约束(A... 将独立成分分析(ICA)算法用于高光谱图像解混时,算法对丰度的独立性要求与实际地物分布相矛盾;同时,采用梯度算法对解混目标函数进行优化时,易收敛到局部极值点。针对上述问题,提出在非负ICA(NICA)模型的目标函数中引入丰度和为一约束(ASC),确保解混出的丰度与实际地物分布一致;同时,采用布谷鸟搜索(CS)算法,利用其优异的全局搜索性能对提出的目标函数进行优化求解。为减少参数维数并缩小CS算法的搜索范围,利用矩阵QR分解理论,将对解混矩阵的搜索转化为对一系列Gives矩阵的识别。仿真数据和真实高光谱图像数据实验结果表明,提出的算法能有效地克服上述问题,在噪声为30dB、像元纯度为0.8时,解混指标光谱角距离(SAD)和均方根误差(RMSE)达到了0.03以下,达到良好解混效果。 展开更多
关键词 高光谱图像解混 非负独立成分分析(NICA) 丰度和为一约束(asc) 布谷鸟搜索(CS)算法 QR分解
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部