In order to improve the performance of the signalized intersection,an unconventional scheme tandem design(TD)is proposed.A simulation experiment is conducted to evaluate the capacity and delay under the unconventional...In order to improve the performance of the signalized intersection,an unconventional scheme tandem design(TD)is proposed.A simulation experiment is conducted to evaluate the capacity and delay under the unconventional scheme and two conventional lane assignment schemes.First,the VISSIM is employed as microsimulation to obtain the delay of different designs at signalized T-intersections under different conditions of traffic flow and turning proportion.Secondly,a method based on discriminant analysis(DA)is proposed to determine the best design scheme using the flow and turning proportion as inputs.Finally,a case study in Changsha city,China is used to demonstrate the efficiency and accuracy of these findings.The results indicate that the traffic flow and turning proportion are the crucial factors in scheme selection of lane assignment.Different from the previous research,the TD has better performance over various traffic flow levels.Furthermore,a proper proportion of left turns makes TD an outstanding option,which can reduce the delay and decrease the average number of stops and queue length significantly.However,the proportion should not be too high or too low.The research results can help practitioners obtain a quantitative view of appropriate design schemes at signalized intersections when trying to relieve traffic congestion according to different traffic conditions.展开更多
In PV (photovoltaic) power systems, a MPPT (maximum power point tracking) algorithm is vital in increasing their efficiency. But it is also vital to take into account the non ideal conditions resulting from comple...In PV (photovoltaic) power systems, a MPPT (maximum power point tracking) algorithm is vital in increasing their efficiency. But it is also vital to take into account the non ideal conditions resulting from complex physical environments in such PV power systems. To minimize the degradation of performances caused by these conditions, and therefore adding reliability and robustness, this paper presents an implementation of a digitally controlled system using a topology based on series connected DC-DC buck converters for a stand-alone PV power system applications, operating with local and autonomous controls, to track the maximum power points of PV modules in non ideal conditions. Simulations are carried out by using C-MEX S-functions under MATLAB-SIMULINK environment. A PV system of 1.44 kWc is described and simulation results are presented.展开更多
A five-axis serial-parallel kinematic milling machine, the SPKM 165, is introduced. This machine consists of a three-degree of-freedom parallel module and a two-degree-of-freedom serial table. The SPKM 165 is capable ...A five-axis serial-parallel kinematic milling machine, the SPKM 165, is introduced. This machine consists of a three-degree of-freedom parallel module and a two-degree-of-freedom serial table. The SPKM 165 is capable of five-face machining. A discussion of the inverse kinematics of the five-axis control is provided. A dimensional synthesis procedure is presented in terms of motion/force transmissibility. Finite-element analysis was used to evaluate the stiffness of a CAD model before the machine was manufactured. Kinematic calibration was implemented to improve the accuracy of the end effector. The results of a calibration experiment are presented. The stiffness of the developed machine was then measured. Milling experiments were conducted, and the test piece showed that the developed machine has satisfactory performance.展开更多
This study proposed a design and optimization strategy for a tandem arranged cascade using the Non-dominated Sorting Genetic Algorithm(NSGA) Ⅱ multi-objective optimization algorithm and Back Propagation(BP) neural ne...This study proposed a design and optimization strategy for a tandem arranged cascade using the Non-dominated Sorting Genetic Algorithm(NSGA) Ⅱ multi-objective optimization algorithm and Back Propagation(BP) neural network technology. The NASA Stage 35 was employed as the initial bench mark in the present study and five geometric control parameters were working as the optimization parameters aiming to enhance the aerodynamic performance in terms of total pressure rise and efficiency. Results showed that the feasibility and capability of the proposed optimization strategy was successfully examined. In view of the fact that the initial tandem cascade(directly scaling down from NASA Stage 35) cannot guarantee the aerodynamic performance, first optimization trial was conducted to optimize the initial design. Results showed that the optimum can improve the flow quality whereas the separation on the blade is decayed or even eliminated particularly at the tip and root regions. However, compared with the initial tandem design, the enhancement in total pressure ratio(0.47%) and efficiency(1%) are too small to be noticed. Second investigation was particularly emphasizing on a high turning tandem compressor with an increment by 28°. The pressure rise and efficiency were augmented by 1.44% and 2.34%(compared to the initial tandem design), respectively. An important conclusion can be drawn that the optimization strategy is worthy to be used in high turning compressors with a considerable performance improvement.展开更多
Extensive numerical investigations of the performance and flow structure in an unshrouded tandem-bladed centrifugal compressor are presented in comparison to a conventional compressor.Stage characteristics are explore...Extensive numerical investigations of the performance and flow structure in an unshrouded tandem-bladed centrifugal compressor are presented in comparison to a conventional compressor.Stage characteristics are explored for various tip clearance levels,axial spacings and circumferential clockings.Conventional impeller was modified to tandem-bladed design with no modifications in backsweep angle,meridional gas passage and camber distributions in order to have a true comparison with conventional design.Performance degradation is observed for both the conventional and tandem designs with increase in tip clearance.Linear-equation models for correlating stage characteristics with tip clearance are proposed.Comparing two designs,it is clearly evident that the conventional design shows better performance at moderate flow rates.However;near choke flow,tandem design gives better results primarily because of the increase in throat area.Surge point flow rate also seems to drop for tandem compressor resulting in increased range of operation.展开更多
It is scientifically important science value and engineering promising to develop the buoyancy-lift integrated hybrid airship for high attitude platform.Through the numerical method,a new tandem wings hybrid airship w...It is scientifically important science value and engineering promising to develop the buoyancy-lift integrated hybrid airship for high attitude platform.Through the numerical method,a new tandem wings hybrid airship with both higher utility value and economy efficiency was obtained and its total performance and technical parameters were analyzed in detail.In order to further improve the lift-drag characteristics,we implemented the optimization design for aerodynamic configuration of tandem wings hybrid airship via the response surface method.The results indicate that the tandem wings hybrid airship has considerable volume efficiency and higher aerodynamic characteristics.After optimization,the lift-drag ratio of this hybrid airship was increased by 6.08%.In a given gross lift condition,tandem wings hybrid airship may provide more payload and specific productivity.Furthermore,the size of tandem airship is smaller so the demand for skin flexible materials can be reduced.Results of this study could serve as a new approach to designing buoyancy-lifting integrated hybrid airship.展开更多
For a series plug-in hybrid electric vehicle,higher working efficiency can be achieved by the drive system with two small motors in parallel than that with one big motor alone.However,the overly complex structure will...For a series plug-in hybrid electric vehicle,higher working efficiency can be achieved by the drive system with two small motors in parallel than that with one big motor alone.However,the overly complex structure will inevitably lead to a substantial increase in the development cost.To improve the system price-performance ratio,a new kind of series-parallel hybrid system evolved from the series plug-in hybrid system is designed.According to the technical parameters of the selected components,the system model is established,and the vehicle dynamic property and pure electric drive economy are evaluated.Based on the dynamic programming,the energy management strategy for the drive system under the city driving cycle is developed,and the superiority validation of the system is completed.For the studied vehicle driven by the designed series-parallel plug-in hybrid system,compared with the one driven by the described series plug-in hybrid system,the dynamic property is significantly improved because of the multi-power coupling,and the fuel consumption is reduced by 11.4%with 10 city driving cycles.In a word,with the flexible configuration of the designed hybrid system and the optimized control strategy of the energy management,the vehicle performance can be obviously improved.展开更多
Efficient tandem reactions on a single catalytic nanostructure would be beneficial to improving chemical transformation efficiency and reducing safety implications. It is imperative to identify the active sites for ea...Efficient tandem reactions on a single catalytic nanostructure would be beneficial to improving chemical transformation efficiency and reducing safety implications. It is imperative to identify the active sites for each single step reaction so that the entire reaction process can be optimized by designing and integrating the sites. Herein, hydrogen transfer reaction is taken as a proof-of-concept demonstration to show that the spatial integration of active sites is important to the catalytic efficiency of the entire process in tandem reactions. We identified specific active sites (i.e., various sites at faces versus corners and edges) for formic acid decomposition and alkene/nitrobenzene hydrogenation-the two steps in hydrogen transfer reactions, by employing three different shapes of Pd nanocrystals in tunable sizes. The investigation reveals that the decomposition of formic acid occurs preferentially at the edge sites of cubic nanocrystal and the plane sites of octahedral/ tetrahedral nanocrystals, while the hydrogenation takes place mainly at the edge sites of both cubic and octahedral/ tetrahedral nanocrystals. The consistency of active edge sites during different step reactions enables cubic nanocrystals to exhibit a higher activity than octahedral nanocrystals in hydrogen transfer reactions, although octahedrons offer comparable activities to cubes in formic acid decomposition and hydrogenation reactions. Guided by these findings, we further improved the overall performance of tandem catalysis by specifically promoting the limiting step through nanocatalyst design. This work provides insights into the rational design of heterogeneous nanocatalysts in tandem reactions.展开更多
文摘In order to improve the performance of the signalized intersection,an unconventional scheme tandem design(TD)is proposed.A simulation experiment is conducted to evaluate the capacity and delay under the unconventional scheme and two conventional lane assignment schemes.First,the VISSIM is employed as microsimulation to obtain the delay of different designs at signalized T-intersections under different conditions of traffic flow and turning proportion.Secondly,a method based on discriminant analysis(DA)is proposed to determine the best design scheme using the flow and turning proportion as inputs.Finally,a case study in Changsha city,China is used to demonstrate the efficiency and accuracy of these findings.The results indicate that the traffic flow and turning proportion are the crucial factors in scheme selection of lane assignment.Different from the previous research,the TD has better performance over various traffic flow levels.Furthermore,a proper proportion of left turns makes TD an outstanding option,which can reduce the delay and decrease the average number of stops and queue length significantly.However,the proportion should not be too high or too low.The research results can help practitioners obtain a quantitative view of appropriate design schemes at signalized intersections when trying to relieve traffic congestion according to different traffic conditions.
文摘In PV (photovoltaic) power systems, a MPPT (maximum power point tracking) algorithm is vital in increasing their efficiency. But it is also vital to take into account the non ideal conditions resulting from complex physical environments in such PV power systems. To minimize the degradation of performances caused by these conditions, and therefore adding reliability and robustness, this paper presents an implementation of a digitally controlled system using a topology based on series connected DC-DC buck converters for a stand-alone PV power system applications, operating with local and autonomous controls, to track the maximum power points of PV modules in non ideal conditions. Simulations are carried out by using C-MEX S-functions under MATLAB-SIMULINK environment. A PV system of 1.44 kWc is described and simulation results are presented.
基金supported in part by the National Natural Science Foundation of China (Grant No. 51075222)the Fund of State Key Laboratory of Tribology (Grant No. SKLT10C02)
文摘A five-axis serial-parallel kinematic milling machine, the SPKM 165, is introduced. This machine consists of a three-degree of-freedom parallel module and a two-degree-of-freedom serial table. The SPKM 165 is capable of five-face machining. A discussion of the inverse kinematics of the five-axis control is provided. A dimensional synthesis procedure is presented in terms of motion/force transmissibility. Finite-element analysis was used to evaluate the stiffness of a CAD model before the machine was manufactured. Kinematic calibration was implemented to improve the accuracy of the end effector. The results of a calibration experiment are presented. The stiffness of the developed machine was then measured. Milling experiments were conducted, and the test piece showed that the developed machine has satisfactory performance.
基金financially supported by the National Natural Science Foundation of China(No.51376150)
文摘This study proposed a design and optimization strategy for a tandem arranged cascade using the Non-dominated Sorting Genetic Algorithm(NSGA) Ⅱ multi-objective optimization algorithm and Back Propagation(BP) neural network technology. The NASA Stage 35 was employed as the initial bench mark in the present study and five geometric control parameters were working as the optimization parameters aiming to enhance the aerodynamic performance in terms of total pressure rise and efficiency. Results showed that the feasibility and capability of the proposed optimization strategy was successfully examined. In view of the fact that the initial tandem cascade(directly scaling down from NASA Stage 35) cannot guarantee the aerodynamic performance, first optimization trial was conducted to optimize the initial design. Results showed that the optimum can improve the flow quality whereas the separation on the blade is decayed or even eliminated particularly at the tip and root regions. However, compared with the initial tandem design, the enhancement in total pressure ratio(0.47%) and efficiency(1%) are too small to be noticed. Second investigation was particularly emphasizing on a high turning tandem compressor with an increment by 28°. The pressure rise and efficiency were augmented by 1.44% and 2.34%(compared to the initial tandem design), respectively. An important conclusion can be drawn that the optimization strategy is worthy to be used in high turning compressors with a considerable performance improvement.
基金the Deanship of Scientific Research,Research Center of College of Engineering, King Saud University for the financial support
文摘Extensive numerical investigations of the performance and flow structure in an unshrouded tandem-bladed centrifugal compressor are presented in comparison to a conventional compressor.Stage characteristics are explored for various tip clearance levels,axial spacings and circumferential clockings.Conventional impeller was modified to tandem-bladed design with no modifications in backsweep angle,meridional gas passage and camber distributions in order to have a true comparison with conventional design.Performance degradation is observed for both the conventional and tandem designs with increase in tip clearance.Linear-equation models for correlating stage characteristics with tip clearance are proposed.Comparing two designs,it is clearly evident that the conventional design shows better performance at moderate flow rates.However;near choke flow,tandem design gives better results primarily because of the increase in throat area.Surge point flow rate also seems to drop for tandem compressor resulting in increased range of operation.
基金supported by the National High-Tech Research and Development Program of China (Grant No. 863-2007AA11Z243)Foundation for Basic Research of Northwestern Polytechnic University (Grant No.JC-201103)
文摘It is scientifically important science value and engineering promising to develop the buoyancy-lift integrated hybrid airship for high attitude platform.Through the numerical method,a new tandem wings hybrid airship with both higher utility value and economy efficiency was obtained and its total performance and technical parameters were analyzed in detail.In order to further improve the lift-drag characteristics,we implemented the optimization design for aerodynamic configuration of tandem wings hybrid airship via the response surface method.The results indicate that the tandem wings hybrid airship has considerable volume efficiency and higher aerodynamic characteristics.After optimization,the lift-drag ratio of this hybrid airship was increased by 6.08%.In a given gross lift condition,tandem wings hybrid airship may provide more payload and specific productivity.Furthermore,the size of tandem airship is smaller so the demand for skin flexible materials can be reduced.Results of this study could serve as a new approach to designing buoyancy-lifting integrated hybrid airship.
基金supported by the National Natural Science Foundation of China(Grant No.51405259)China Postdoctoral Science Foundation funded project(Grant Nos.2014T70072&2013M530608)Colleges and Universities in Hebei Province Science and Technology Research Project(Grant No.QN2015056)
文摘For a series plug-in hybrid electric vehicle,higher working efficiency can be achieved by the drive system with two small motors in parallel than that with one big motor alone.However,the overly complex structure will inevitably lead to a substantial increase in the development cost.To improve the system price-performance ratio,a new kind of series-parallel hybrid system evolved from the series plug-in hybrid system is designed.According to the technical parameters of the selected components,the system model is established,and the vehicle dynamic property and pure electric drive economy are evaluated.Based on the dynamic programming,the energy management strategy for the drive system under the city driving cycle is developed,and the superiority validation of the system is completed.For the studied vehicle driven by the designed series-parallel plug-in hybrid system,compared with the one driven by the described series plug-in hybrid system,the dynamic property is significantly improved because of the multi-power coupling,and the fuel consumption is reduced by 11.4%with 10 city driving cycles.In a word,with the flexible configuration of the designed hybrid system and the optimized control strategy of the energy management,the vehicle performance can be obviously improved.
基金financially supported in part by the National Key R&D Program of China(2017YFA0207301)the Nation Natural Science Foundation of China(21725102,U1832156,21601173,21890751 and 21803002)+4 种基金CAS Key Research Program of Frontier Sciences(QYZDB-SSW-SLH018)CAS Interdisciplinary Innovation Teamthe Ministry of Science and Technology of China(2016YFA0200602 and 2018YFA0208603)the Chinese Universities Scientific Fund(WK2310000067)the support from USTC Center for the Micro- and Nanoscale Research and Fabrication
文摘Efficient tandem reactions on a single catalytic nanostructure would be beneficial to improving chemical transformation efficiency and reducing safety implications. It is imperative to identify the active sites for each single step reaction so that the entire reaction process can be optimized by designing and integrating the sites. Herein, hydrogen transfer reaction is taken as a proof-of-concept demonstration to show that the spatial integration of active sites is important to the catalytic efficiency of the entire process in tandem reactions. We identified specific active sites (i.e., various sites at faces versus corners and edges) for formic acid decomposition and alkene/nitrobenzene hydrogenation-the two steps in hydrogen transfer reactions, by employing three different shapes of Pd nanocrystals in tunable sizes. The investigation reveals that the decomposition of formic acid occurs preferentially at the edge sites of cubic nanocrystal and the plane sites of octahedral/ tetrahedral nanocrystals, while the hydrogenation takes place mainly at the edge sites of both cubic and octahedral/ tetrahedral nanocrystals. The consistency of active edge sites during different step reactions enables cubic nanocrystals to exhibit a higher activity than octahedral nanocrystals in hydrogen transfer reactions, although octahedrons offer comparable activities to cubes in formic acid decomposition and hydrogenation reactions. Guided by these findings, we further improved the overall performance of tandem catalysis by specifically promoting the limiting step through nanocatalyst design. This work provides insights into the rational design of heterogeneous nanocatalysts in tandem reactions.