期刊文献+
共找到1,343篇文章
< 1 2 68 >
每页显示 20 50 100
临床医学命名实体识别的病历质量筛选标准研究 被引量:1
1
作者 王怡 白雪 +6 位作者 崔胜男 任慧玲 张湛 刘振宇 范阳华 郭进京 冯铭 《中国卫生质量管理》 2018年第6期34-36,共3页
电子病历包含大量的重要的临床信息资源,通过人工智能手段对其进行分词、挖掘,建立临床医学命名实体数据库,可深度开发利用病历。分析了医学命名实体识别与电子病历的关系,指出病历记录内容不真实、不完整、不规范以及模板使用与拷贝雷... 电子病历包含大量的重要的临床信息资源,通过人工智能手段对其进行分词、挖掘,建立临床医学命名实体数据库,可深度开发利用病历。分析了医学命名实体识别与电子病历的关系,指出病历记录内容不真实、不完整、不规范以及模板使用与拷贝雷同等是影响临床医学命名实体识别的问题,提出应从基本标准、内在逻辑、单项否决标准3方面建立病历质量筛选标准,并及时调整。建立标准筛选合格病历,是提升临床医学命名实体质量的有效举措。 展开更多
关键词 电子病历 临床医学命名实体 病历质量 筛选标准
下载PDF
融合标签知识的中文医学命名实体识别
2
作者 尹宝生 周澎 《计算机科学》 CSCD 北大核心 2024年第S01期128-134,共7页
医学领域命名实体识别是信息抽取任务重要的研究内容之一,其训练数据主要来源于临床实验数据、健康档案、电子病历等非结构化文本,然而标注这些数据需要专业人员耗费大量人力、物力和时间资源。在缺乏大规模医学训练数据的情况下,医学... 医学领域命名实体识别是信息抽取任务重要的研究内容之一,其训练数据主要来源于临床实验数据、健康档案、电子病历等非结构化文本,然而标注这些数据需要专业人员耗费大量人力、物力和时间资源。在缺乏大规模医学训练数据的情况下,医学领域命名实体识别模型很容易出现识别错误的情况。为解决这一难题,文中提出了一种融合标签知识的中文医学命名实体识别方法,即通过专业领域词典获得文本标签的释义后,分别将文本、标签及标签释义编码,基于自适应融合机制进行融合,有效平衡特征提取模块和语义增强模块的信息流,从而提高模型性能。其核心思想在于医学实体标签是通过总结归纳大量医学数据得到的,而标签释义是对标签进行科学解释和说明的结果,模型融入这些蕴含了丰富的医学领域内的先验知识,可以使其更准确地理解实体在医学领域中的语义并提升其识别效果。实验结果表明,该方法在中文医学实体抽取数据集(CMeEE-V2)3个基线模型上分别取得了0.71%,0.53%和1.17%的提升,并且为小样本场景下的实体识别提供了一个有效的解决方案。 展开更多
关键词 中文医学命名实体识别 标签知识 先验知识 自适应融合机制 小样本
下载PDF
位置标签增强的中文医学命名实体级联识别
3
作者 王旭阳 赵丽婕 张继远 《计算机工程与应用》 CSCD 北大核心 2024年第2期121-128,共8页
针对一般领域的命名实体识别方法不能直接用于中文医学专业实体的识别,现有的相关研究只专注于英文文本和扁平结构的医学实体识别等问题,通过对专业领域实体识别方法的研究,结合中文医学实体的特点提出了一种面向中文医学实体的级联识... 针对一般领域的命名实体识别方法不能直接用于中文医学专业实体的识别,现有的相关研究只专注于英文文本和扁平结构的医学实体识别等问题,通过对专业领域实体识别方法的研究,结合中文医学实体的特点提出了一种面向中文医学实体的级联识别方法。将每个字符元素相对于实体的位置标签嵌入模型,并结合中文医学实体跨度内不同元素的重要程度进行实体的融合表示。通过序列标注方法检测字符的位置标签,利用字符的位置信息指导候选实体生成,并进行实体语义分类。模型在CMeEE和CCKS2018数据集以及中文糖尿病科研文献数据集上分别进行扁平实体、嵌套实体和不连续性长实体的识别实验。实验结果表明,该方法能够有效地识别中文医学文本中不同结构的实体。 展开更多
关键词 中文医学命名实体 位置标签嵌入 结合元素重要程度的实体融合表示 级联识别 线性结构
下载PDF
基于多粒度字形增强的中文医学命名实体识别 被引量:1
4
作者 刘威 马磊 +1 位作者 李凯 李蓉 《计算机工程》 CAS CSCD 北大核心 2024年第2期337-344,共8页
中文医学命名实体识别(CMNER)旨在从中文非结构化医学文本中提取实体。现有的基于字符的CMNER模型没有从不同角度全面考虑汉字的特点,限制了其应用于CMNER的性能。基于此,提出基于多粒度字形增强的中文医学命名实体识别模型。对于输入... 中文医学命名实体识别(CMNER)旨在从中文非结构化医学文本中提取实体。现有的基于字符的CMNER模型没有从不同角度全面考虑汉字的特点,限制了其应用于CMNER的性能。基于此,提出基于多粒度字形增强的中文医学命名实体识别模型。对于输入的句子,结合汉字的字形空间结构和偏旁部首的表示,同时根据相应的领域词典来匹配字符的领域词信息,增强字符的语义和潜在边界信息,使模型获得更好的实体识别能力;通过门控机制整合领域词和汉字的字形多粒度特征,综合考虑汉字的领域信息和汉字底层信息,从而具有更好的感知医学实体的能力。在此基础上,将多粒度字形增强的字符表示输入到双向长短记忆和条件随机场层,分别进行上下文编码和标签解码。实验结果表明,本文模型较于最佳基线模型在IMCS21和CMeEE数据集上的F1值分别提升了1.04%和0.62%。此外,通过消融实验验证了该模型的每个组成部分的有效性,在识别中文医学命名实体时具有较好的识别性能。 展开更多
关键词 命名实体识别 医学领域 字形结构 门控机制 领域词典
下载PDF
融合词信息和图注意力的医学命名实体识别 被引量:1
5
作者 赵珍珍 董彦如 +2 位作者 刘静 张俊忠 曹慧 《计算机工程与应用》 CSCD 北大核心 2024年第11期147-155,共9页
中文临床自然语言中富含大量的病历信息,对电子病历进行命名实体识别有助于建立医学辅助诊断系统,对医学领域的发展具有重要的意义,同时有利于下游任务如关系提取、建立知识图谱的实现。但中文电子病历存在中文分词困难、医学专业术语... 中文临床自然语言中富含大量的病历信息,对电子病历进行命名实体识别有助于建立医学辅助诊断系统,对医学领域的发展具有重要的意义,同时有利于下游任务如关系提取、建立知识图谱的实现。但中文电子病历存在中文分词困难、医学专业术语多、含有特殊表达方式的问题,易造成文本特征表达错误,于是提出基于增强词信息和图注意力的医学命名实体识别研究模型,通过增强局部特征和全局特征提高网络模型的性能。由于嵌入单一的字向量进行中文实体识别易忽略文本中词信息及语义,为此在字向量中嵌入与其高度关联的词向量,既增强文本表示,又避免分词错误的问题,并且在嵌入层中嵌入了学习医疗知识的MedBert模型,该模型能根据不同语境动态生成特征向量,有助于解决电子病历中一词多义及专业词汇的问题。同时,在编码层中添加图注意力模块增强模型学习文本上下文关系的能力和对医疗特殊语法的学习。在cEHRNER和cMedQANER数据集的实验上分别获得了86.38%和84.76%的F1值,与其他模型相比有较好的鲁棒性。 展开更多
关键词 图注意力 匹配词 命名实体识别 Bert模型
下载PDF
基于字形特征的中文医学命名实体识别方法
6
作者 孟伟伦 郭景峰 +3 位作者 邢珂萱 魏宁 王巧梭 刘滨 《电子学报》 EI CAS CSCD 北大核心 2024年第6期1945-1954,共10页
作为医学信息抽取的第一个关键环节,医学命名实体识别任务旨在从如电子医疗病例、中文医药说明书等非结构化文本中抽取出医学相关的实体.目前大多数中文医学命名实体识别工作通过在预训练模型上进行微调来获得文本表示向量,然后利用特... 作为医学信息抽取的第一个关键环节,医学命名实体识别任务旨在从如电子医疗病例、中文医药说明书等非结构化文本中抽取出医学相关的实体.目前大多数中文医学命名实体识别工作通过在预训练模型上进行微调来获得文本表示向量,然后利用特征工程来提升模型在医疗领域上的性能.这些模型大部分源自在通用数据集上表现较好的模型,没有考虑中文医学数据集的语言特性.通过在多个医学数据集上进行统计分析,发现部分类型的医学实体在字形上具有共性,如在汉字中大部分表示疾病含义的字符都包含“疒”,大部分表示身体器官的字符都包含“月”.针对这些问题,本文提出了一种基于字形特征的中文医学命名实体识别方法,该方法通过在文本表示向量上融合字形向量以及进一步利用数据集中负样本来提升模型的准确度和泛化能力.在多个公共的中文医学数据集上的实验结果表明,该方法获得了比其他模型更好的效果,并且通过消融实验证明了融合字形特征和从负样本中学习对于该任务是有效的. 展开更多
关键词 字形 负样本 两阶段 医学信息 命名实体识别 深度学习
下载PDF
基于自注意力机制与词汇增强的中文医学命名实体识别
7
作者 罗歆然 李天瑞 贾真 《计算机应用》 CSCD 北大核心 2024年第2期385-392,共8页
针对中文医学文本实体嵌套导致的单词边界识别困难问题以及现有栅格结构集成词汇特征所面临的语义信息损失严重的情况,提出一种用于中文医学命名实体识别(MNER)的自适应词汇信息增强模型。首先,利用双向长短期记忆(BiLSTM)网络编码字符... 针对中文医学文本实体嵌套导致的单词边界识别困难问题以及现有栅格结构集成词汇特征所面临的语义信息损失严重的情况,提出一种用于中文医学命名实体识别(MNER)的自适应词汇信息增强模型。首先,利用双向长短期记忆(BiLSTM)网络编码字符序列的上下文信息并捕捉较长距离的依赖关系;然后,对字符序列中每个字符的潜在单词信息进行字词对建模,采用自注意力机制实现不同单词之间的内部交互;最后,通过基于双线性注意力机制的词汇适配器将词汇信息集成到文本序列中的每个字符中,有效增强语义信息的同时充分利用单词丰富的边界信息,并抑制相关性低的单词。实验结果表明,所提模型与基于字符的基线模型相比,平均F1值分别提升了1.37~2.38个百分点,并在结合BERT后取得了最优的效果。 展开更多
关键词 医学命名实体识别 中文医学文本 词汇适配器 自注意力机制 双向长短期记忆网络
下载PDF
基于BioBERT与BiLSTM的临床试验纳排标准命名实体识别
8
作者 李盛青 苏前敏 黄继汉 《中国医学物理学杂志》 CSCD 2024年第1期125-132,共8页
目的:提出一种基于BioBERT预训练模型的纳排标准命名实体识别方法(BioBERT-Att-BiLSTM-CRF),可自动提取临床试验相关信息,为高效制定纳排标准提供帮助。方法:结合UMLS医学语义网络和专家定义方式,制定医学实体标注规则,并建立命名实体... 目的:提出一种基于BioBERT预训练模型的纳排标准命名实体识别方法(BioBERT-Att-BiLSTM-CRF),可自动提取临床试验相关信息,为高效制定纳排标准提供帮助。方法:结合UMLS医学语义网络和专家定义方式,制定医学实体标注规则,并建立命名实体识别语料库以明确实体识别任务。BioBERT-Att-BiLSTM-CRF首先将文本转换为BioBERT向量并输入至双向长短期记忆网络以捕捉上下文语义特征;同时运用注意力机制来提取关键特征;最终采用条件随机场解码并输出最优标签序列。结果:BioBERT-Att-BiLSTM-CRF在纳排标准命名实体识别数据集上的效果优于其他基准模型。结论:使用BioBERT-Att-BiLSTM-CRF能更高效地提取临床试验的纳排标准相关信息,从而增强临床试验注册数据的科学性,并为临床试验纳排标准的制定提供帮助。 展开更多
关键词 纳排标准 命名实体识别 双向长短期记忆网络 条件随机场 临床试验
下载PDF
基于多特征融合嵌入与DCNN的临床命名实体识别模型研究
9
作者 杨旭 梁志剑 《中北大学学报(自然科学版)》 CAS 2024年第3期265-273,共9页
针对目前最先进的临床命名实体识别(Cinical Named Entity Recognition,CNER)模型未能充分挖掘文本的全局信息和语义特征,以及未能解决文本中的字符替换等问题,改进了传统的单词嵌入模型,并在此基础上提出了一种结合深度卷积神经网络和... 针对目前最先进的临床命名实体识别(Cinical Named Entity Recognition,CNER)模型未能充分挖掘文本的全局信息和语义特征,以及未能解决文本中的字符替换等问题,改进了传统的单词嵌入模型,并在此基础上提出了一种结合深度卷积神经网络和双向短时记忆条件随机场(DCNN-BiLSTM-CRF)的临床文本命名实体识别方法。改进的单词嵌入模型融合词根、拼音和字符本身意义,使用了来自Transformers的双向编码器表示,使单词嵌入向量具有汉字和临床文本的特点,该方法通过在临床命名实体识别任务中引入深度卷积神经网络(Deep Convolutional Neural Networks,DCNN),解决了CNN预测时丢失部分信息无法找回的问题。通过使用DCNN,本文模型能够更有效地捕获全局信息、获取字符之间的权重关系和多层次语义特征信息,从而提高了临床命名实体识别的准确性。在数据集CCKS2017和CCKS2018上分别进行实验,实验结果表明,与基准模型相比,该模型F1值分别改善了0.48%,0.68%,0.6%,0.58%,0.04%和1.43%,2.36%,3.31%,1.11%,0.17%。为了进一步验证本文的模型,进行了两种消融实验。结果表明,在两个数据集CCKS2017和CCKS2018上本文模型对比变体模型M1,F1值分别改善了0.79%和0.84%;对比变体模型M2,F1值分别改善了0.53%和0.64%。这些实验结果证明了本文所提算法的可行性。 展开更多
关键词 临床命名实体识别 多特征融合嵌入 深度卷积神经网络 BLSTM-CRF BERT
下载PDF
基于BiLSTM-CRF的命名实体识别在临床电子病历的研究与应用
10
作者 廖天正 林晓兰 +3 位作者 陈永辉 严晓明 刘昭欣 梁会营 《电脑知识与技术》 2024年第28期17-19,共3页
命名实体识别是自然语言处理领域的重要任务之一,其在患者电子病历中的应用具有重要的临床意义。电子病历记录了患者的详细医疗信息,包括诊断、治疗、药物使用和病史等,是医疗决策支持、医学研究、公共卫生监测和患者管理的重要数据来... 命名实体识别是自然语言处理领域的重要任务之一,其在患者电子病历中的应用具有重要的临床意义。电子病历记录了患者的详细医疗信息,包括诊断、治疗、药物使用和病史等,是医疗决策支持、医学研究、公共卫生监测和患者管理的重要数据来源。准确提取电子病历中的医学实体如疾病名称、症状、药物等至关重要。然而,电子病历的文本通常存在书写风格多样、专业术语复杂以及拼写错误等问题,使实体提取面临巨大挑战。文章结合了一种基于双向长短期记忆网络和条件随机场的混合模型,用于捕捉文本的上下文信息,进行标签序列优化以提高实体识别的准确性和鲁棒性。实验结果表明,该方法在一个公开的医疗数据集上取得了较好的性能,在识别疾病名称、症状等医学实体方面表现优异。该模型方法为电子病历的信息提取提供了有效的解决方案。 展开更多
关键词 电子病历 命名实体识别 条件随机场 双向长短期记忆网络
下载PDF
结合全局信息增强的医学领域命名实体识别研究
11
作者 要媛媛 付潇 +2 位作者 杨东瑛 王洁宁 郑文 《电子科技大学学报》 EI CAS CSCD 北大核心 2024年第3期431-439,共9页
中文医疗问诊文本中,由于口语化的不规则表达和专业术语的频繁出现,药物名称等实体难以被精准地识别出来。为了充分利用中文句子词间关系的重要作用,提出了一种用于增强全局信息的医学命名实体识别模型。模型利用注意力机制增强了词嵌... 中文医疗问诊文本中,由于口语化的不规则表达和专业术语的频繁出现,药物名称等实体难以被精准地识别出来。为了充分利用中文句子词间关系的重要作用,提出了一种用于增强全局信息的医学命名实体识别模型。模型利用注意力机制增强了词嵌入表征,并在使用双向长短时记忆网络的序列处理能力获取上下文信息的基础上,同时从两个方面丰富了句子的全局信息表示。其一是根据句法关系获取词语之间额外依赖关系构建了图卷积网络层用于丰富词间的依赖;其二是构建了辅助任务用于预测词间句法依赖关系的类别。在中文医疗问诊数据集上的实验结果表明,模型具有很好的竞争力,F1值达到94.54%。与其他模型相比,在药物和症状等实体类别的识别上取得了明显提高。在微博公开数据集上的实验也表明,模型具有通用领域的应用价值。 展开更多
关键词 注意力机制 双向长短时记忆网络 图卷积网络 医疗问诊 命名实体识别
下载PDF
融合多特征及协同注意力的医学命名实体识别
12
作者 刘歆宁 《计算机工程与应用》 CSCD 北大核心 2024年第6期188-198,共11页
针对当前中文医疗命名实体识别中未融合医学领域文本独有的特征信息导致实体识别准确率无法有效提升的情况,及单注意力机制影响实体分类效果的问题,提出一种基于多特征融合和协同注意力机制的中文医疗命名实体识别方法。利用预训练模型... 针对当前中文医疗命名实体识别中未融合医学领域文本独有的特征信息导致实体识别准确率无法有效提升的情况,及单注意力机制影响实体分类效果的问题,提出一种基于多特征融合和协同注意力机制的中文医疗命名实体识别方法。利用预训练模型得到原始医学文本的向量表示,再利用双向门控循环神经网络(BiGRU)获取字粒度的特征向量。结合医疗领域命名实体鲜明的部首特征,利用迭代膨胀卷积神经网络(IDCNN)提取部首级别的特征向量。使用协同注意力网络(co-attention network)整合特征向量,生成<文字-部首>对的双相关特征,再利用条件随机场(CRF)输出实体识别结果。实验结果表明,在CCKS数据集上,相较于其他的实体识别模型能取得更高的准确率、召回率和F1值,同时虽然增加了识别模型的复杂程度,但性能并没有明显的降低。 展开更多
关键词 中文医学文本 命名实体识别 多特征融合 协同注意力机制 BERT模型
下载PDF
面向生物医学命名实体识别和规范化的多粒度特征融合
13
作者 刘彤 石昌岭 倪维健 《计算机系统应用》 2024年第11期237-246,共10页
为了从生物医学文献中提取丰富的实体信息及其规范化表达,提出了一种面向生物医学命名实体和规范化的多粒度特征融合方法 (multi-granularity feature fusion approach for biomedical named entity recognition and normalization, MGF... 为了从生物医学文献中提取丰富的实体信息及其规范化表达,提出了一种面向生物医学命名实体和规范化的多粒度特征融合方法 (multi-granularity feature fusion approach for biomedical named entity recognition and normalization, MGFFA).通过整合字符级、词级、概念级的文本信息,显著增强了模型的学习能力.同时还包含一个用于存储和综合不同层次信息的记忆库,以实现对实体及其规范化标签间复杂关系的深入理解.通过预训练模型的配合使用, MGFFA不仅捕捉了文本的粗粒度语义表示,还细致分析了构词层面的特征,从而全面提升了对长跨度实体的识别准确率.在NCBI和NC5CDR数据集上的实验结果显示,该模型在总体上优于其他基线模型. 展开更多
关键词 生物医学命名实体识别 生物医学命名实体规范化 多任务学习 记忆网络
下载PDF
增强实体边界检测的医学命名实体识别
14
作者 徐凤娇 《长江信息通信》 2024年第3期77-79,共3页
针对中文电子病历报告中专业词汇较多导致的边界识别困难问题,文章提出了一种增强实体边界检测方法来更好地识别医学命名实体,即以实体边界预测为辅助任务,增强模型对实体边界的检测能力,提高模型性能。该文从两个方面增强了实体边界,... 针对中文电子病历报告中专业词汇较多导致的边界识别困难问题,文章提出了一种增强实体边界检测方法来更好地识别医学命名实体,即以实体边界预测为辅助任务,增强模型对实体边界的检测能力,提高模型性能。该文从两个方面增强了实体边界,一是通过在BERT与训练语言模型底层添加自制医学词典,增强模型对词汇边界信息的学习;二是以实体头尾预测作为辅助任务,进一步增强模型对实体边界的识别能力。在1个医学领域的公共数据集上进行了实验,相较于基线模型,F1值得到了1.96%的提升,说明该方法能有效检测实体边界,提升模型性能,验证了该模型的在医学领域的适用性。 展开更多
关键词 医学命名实体识别 实体边界检测 LEBERT
下载PDF
基于RoBERTa-Span-Attack的标签指针网络军事命名实体识别 被引量:1
15
作者 罗兵 张显峰 +1 位作者 段立 陈琳 《海军工程大学学报》 CAS 北大核心 2024年第1期76-82,93,共8页
军事领域文本中存在大量军事实体信息,准确识别这些信息是军事文本信息提取和构建军事知识图谱的基础性任务。首先,提出了一种基于RoBERTa预训练模型、跨度和对抗训练的标签指针网络的融合深度模型(RoBERTa-Span-Attack),用于中文军事... 军事领域文本中存在大量军事实体信息,准确识别这些信息是军事文本信息提取和构建军事知识图谱的基础性任务。首先,提出了一种基于RoBERTa预训练模型、跨度和对抗训练的标签指针网络的融合深度模型(RoBERTa-Span-Attack),用于中文军事命名实体识别;然后,采用了一种基于Span的标签指针网络,同时完成实体的起止位置和类别的识别任务;最后,在模型训练过程中加入对抗训练策略,通过添加一些扰动来生成对抗样本进行训练。在军事领域数据集上的实验结果表明:所提出的军事领域命名实体识别模型相较于BERT-CRF、BERT-Softmax和BERT-Span,在识别准确度上具有更优的效果。 展开更多
关键词 军事命名实体识别 预训练模型 跨度 标签指针网络 对抗训练
下载PDF
基于命名实体识别的《神农本草经》知识图谱构建及可视化分析
16
作者 佟琳 张华敏 +4 位作者 佟旭 雷蕾 王程 曾子玲 杨洪军 《中国中医药信息杂志》 CAS CSCD 2024年第8期37-43,共7页
目的构建《神农本草经》知识图谱,分析本草知识、挖掘隐性知识并进行可视化展示,为古籍研究提供方法学参考。方法梳理并表述《神农本草经》文献涉及的知识实体类型和实体间关系,应用BIO序列标注方法生产训练语料数据集,使用自主研发的C... 目的构建《神农本草经》知识图谱,分析本草知识、挖掘隐性知识并进行可视化展示,为古籍研究提供方法学参考。方法梳理并表述《神农本草经》文献涉及的知识实体类型和实体间关系,应用BIO序列标注方法生产训练语料数据集,使用自主研发的CNLP文本标注系统进行文本标注,采用BERT模型识别命名实体,基于规则与语义关联设定确定实体间关系,经知识融合后,用Cypher语言导入图数据库Neo4j-community4.4.9进行存储和可视化展示,构建知识图谱。结果《神农本草经》知识图谱包含5273个节点、11064个关系,其模式层包含14种实体类、16种关系类型。可通过Cypher语言查询,从中药分类、药性理论、七情配伍、中药应用方面进行知识的可视化展示。结论本研究构建的知识图谱可直观反映《神农本草经》所载知识及隐性关系,适用于中医药古籍的知识挖掘及直观多维展示。 展开更多
关键词 知识图谱 神农本草经 本草知识 命名实体识别
下载PDF
基于连续提示注入与指针网络的农业病害命名实体识别
17
作者 王春山 张宸硕 +3 位作者 吴华瑞 朱华吉 缪祎晟 张立杰 《农业机械学报》 EI CAS CSCD 北大核心 2024年第6期254-261,共8页
针对农业病害领域命名实体识别过程中存在的预训练语言模型利用不充分、外部知识注入利用率低、嵌套命名实体识别率低的问题,本文提出基于连续提示注入和指针网络的命名实体识别模型CP-MRC(Continuous prompts for machine reading comp... 针对农业病害领域命名实体识别过程中存在的预训练语言模型利用不充分、外部知识注入利用率低、嵌套命名实体识别率低的问题,本文提出基于连续提示注入和指针网络的命名实体识别模型CP-MRC(Continuous prompts for machine reading comprehension)。该模型引入BERT(Bidirectional encoder representation from transformers)预训练模型,通过冻结BERT模型原有参数,保留其在预训练阶段获取到的文本表征能力;为了增强模型对领域数据的适用性,在每层Transformer中插入连续可训练提示向量;为提高嵌套命名实体识别的准确性,采用指针网络抽取实体序列。在自建农业病害数据集上开展了对比实验,该数据集包含2933条文本语料,8个实体类型,共10414个实体。实验结果显示,CP-MRC模型的精确率、召回率、F1值达到83.55%、81.4%、82.4%,优于其他模型;在病原、作物两类嵌套实体的识别率较其他模型F1值提升3个百分点和13个百分点,嵌套实体识别率明显提升。本文提出的模型仅采用少量可训练参数仍然具备良好识别性能,为较大规模预训练模型在信息抽取任务上的应用提供了思路。 展开更多
关键词 农业病害 命名实体识别 连续提示 指针网络 嵌套实体 预训练语言模型
下载PDF
基于细粒度原型网络的小样本命名实体识别方法
18
作者 戚荣志 周俊宇 +1 位作者 李水艳 毛莺池 《软件学报》 EI CSCD 北大核心 2024年第10期4751-4765,共15页
原型网络直接应用于小样本命名实体识别(few-shot named entity recognition,FEW-NER)时存在以下问题:非实体之间不具有较强的语义关系,对实体和非实体都采用相同的方式构造原型将会造成非实体原型不能准确表示非实体的语义特征;仅使用... 原型网络直接应用于小样本命名实体识别(few-shot named entity recognition,FEW-NER)时存在以下问题:非实体之间不具有较强的语义关系,对实体和非实体都采用相同的方式构造原型将会造成非实体原型不能准确表示非实体的语义特征;仅使用平均实体向量表示作为原型的计算方式将难以捕捉语义特征相差较大的同类实体.针对上述问题,提出基于细粒度原型网络的小样本命名实体识别(FEW-NER based on fine-grained prototypical networks,FNFP)方法,有助于提高小样本命名实体识别的标注效果.首先,为不同的查询集样本构造不同的非实体原型,捕捉句子中关键的非实体语义特征,得到更为细粒度的原型,提升模型对非实体的识别效果;然后,设计一个不一致性度量模块以衡量同类实体之间的不一致性,对实体与非实体采用不同的度量函数,从而减小同类样本之间的特征表示,提升原型的特征表示能力;最后,引入维特比解码器捕捉标签转换关系,优化最终的标注序列.实验结果表明,采用基于细粒度原型网络的小样本命名实体识别方法,在大规模小样本命名实体识别数据集FEW-NERD上,较基线方法获得提升;同时在跨领域数据集上验证所提方法在不同领域场景下的泛化能力. 展开更多
关键词 小样本命名实体识别 细粒度原型网络 小样本学习 特征表示
下载PDF
因果关系表示增强的跨领域命名实体识别
19
作者 刘小明 曹梦远 +2 位作者 杨关 刘杰 王杭 《计算机工程与应用》 CSCD 北大核心 2024年第18期176-188,共13页
跨领域命名实体识别在现实应用中,尤其在目标领域数据稀缺的小样本场景中具有重要价值。然而,现有方法主要是通过特征表示或模型参数共享实现的跨领域实体能力迁移,未充分考虑由于样本选择偏差而引起的虚假相关性问题。为了解决跨领域... 跨领域命名实体识别在现实应用中,尤其在目标领域数据稀缺的小样本场景中具有重要价值。然而,现有方法主要是通过特征表示或模型参数共享实现的跨领域实体能力迁移,未充分考虑由于样本选择偏差而引起的虚假相关性问题。为了解决跨领域中的虚假相关性问题,提出一种因果关系表示增强的跨领域命名实体识别模型,将源域的语义特征表示与目标域的语义特征表示进行融合,生成一种增强的上下文语义特征表示。通过结构因果模型捕捉增强后的特征变量与标签之间的因果关系。在目标域中应用因果干预和反事实推断策略,提取存在的直接因果效应,从而进一步缓解特征与标签之间的虚假相关性问题。该方法在公共数据集上进行了实验,实验结果得到了显著提高。 展开更多
关键词 跨领域命名实体识别 迁移学习 因果关系 结构因果模型 语义特征表示
下载PDF
基于多头注意力机制字词联合的中文命名实体识别
20
作者 王进 王猛旗 +2 位作者 张昕跃 孙开伟 朴昌浩 《江苏大学学报(自然科学版)》 CAS 北大核心 2024年第1期77-84,共8页
针对现有基于字词联合的中文命名实体识别方法会引入冗余词汇干扰、模型网络结构复杂、难以迁移的问题,提出一种基于多头注意力机制字词联合的中文命名实体识别算法.算法采用多头注意力机制融合词汇边界信息,并通过分类融合BIE词集降低... 针对现有基于字词联合的中文命名实体识别方法会引入冗余词汇干扰、模型网络结构复杂、难以迁移的问题,提出一种基于多头注意力机制字词联合的中文命名实体识别算法.算法采用多头注意力机制融合词汇边界信息,并通过分类融合BIE词集降低冗余词汇干扰.建立了多头注意力字词联合模型,包含字词匹配、多头注意力、融合等模块.与现有中文命名实体识别方法相比,本算法避免了设计复杂的序列模型,方便与现有基于字的中文命名实体识别模型结合.采用召回率、精确率以及F 1值作为评价指标,通过消融试验验证模型各个部分的效果.结果表明,本算法在MSRA和Weibo数据集上F 1值分别提升0.28、0.69,在Resume数据集上精确率提升0.07. 展开更多
关键词 中文命名实体识别 词汇冗余 词汇边界信息 字词联合 多头注意力机制 BIE词集
下载PDF
上一页 1 2 68 下一页 到第
使用帮助 返回顶部