Platinum-based anticancer drugs, including cisplatin and its analogues, have played important roles in the clinical treatment of solid tumors over the past 38 years. However, poor selectivity, high toxicity and intrin...Platinum-based anticancer drugs, including cisplatin and its analogues, have played important roles in the clinical treatment of solid tumors over the past 38 years. However, poor selectivity, high toxicity and intrinsic or acquired drug resistance profoundly limit their application, which encourages the development of novel transition metal-based anticancer agents with different mechanisms of action. To this end, transition metal complexes that can simultaneously act on more than one target, termed as single-molecule multi-targeting complexes, have attracted increasing attention because of their enhanced efficacy and diminished chance of drug resistance. In this review, we systematically discuss the recent progress in the development of platinum- and ruthenium-based anticancer agents, in particular the rational design of platinum and ruthenium complexes with multi-targeting features.展开更多
基金supported by the National Natural Science Foundation of China(21135006,21127901,21275148,21301181,21321003,21575145)the National Basic Research Program of China(2013CB531805)
文摘Platinum-based anticancer drugs, including cisplatin and its analogues, have played important roles in the clinical treatment of solid tumors over the past 38 years. However, poor selectivity, high toxicity and intrinsic or acquired drug resistance profoundly limit their application, which encourages the development of novel transition metal-based anticancer agents with different mechanisms of action. To this end, transition metal complexes that can simultaneously act on more than one target, termed as single-molecule multi-targeting complexes, have attracted increasing attention because of their enhanced efficacy and diminished chance of drug resistance. In this review, we systematically discuss the recent progress in the development of platinum- and ruthenium-based anticancer agents, in particular the rational design of platinum and ruthenium complexes with multi-targeting features.