The high-pressure phase behavior of coating-solvent-supercritical or sub-critical carbon dioxide system was investigated experimentally. The coating matrix used was 108-acrylic resin at concentration ranging from 10% ...The high-pressure phase behavior of coating-solvent-supercritical or sub-critical carbon dioxide system was investigated experimentally. The coating matrix used was 108-acrylic resin at concentration ranging from 10% to 50% (by mass) in mixtures with n-butyl acetate. The experiments were conducted in a high-pressure view cell for temperatures from 35℃ to 65℃ and for pressures from 3.0MPa to 8.0MPa. The effect of temperature, pressure and content of every component on the phase behavior of the systems was observed. Finally, the ternary phase diagram for resin-solvent-CO2 was plotted.展开更多
To explore the feasibility of the full automatic animal experimental cabin to establish the animal models in normobaric/hypobaric hypoxic and high carbon dioxide environment. Methods: Sixty SPF-class male DS rats wer...To explore the feasibility of the full automatic animal experimental cabin to establish the animal models in normobaric/hypobaric hypoxic and high carbon dioxide environment. Methods: Sixty SPF-class male DS rats were divided into 2 groups, 20 for normobaric, hypoxic conditions and the other 40 for hypobaric, hypoxic conditions. For each group, the pulmonary arterial pressure and carotid arterial pressure indicators of rats were examined by using the physiological multi-detector, and the pulmonary vascular changes in the structure were observed. Results: The normobaric/hypobaric hypoxic with high carbon dioxide environment can promote the formation of pulmonary hypertension and accelerate changes in pulmonary vascular remodeling, and promote the right ventricular hypertrophy. Conclusion: Clinical applications showed that the animal experimental cabin has observed and controlled accurately. The result was safe, reliable and reproducible. The cabin can successfully establish the pulmonary hypertension model in normobaric/hypobaric hypoxic with high carbon dioxide environment, and in order to study the physiological mechanism of a variety of circulation and respiratory diseases caused by lack of oxygen, which provided an experimental technology platform for clinical research.展开更多
Some aromatic compounds, phenol, aniline and nitrobenzene, were oxidized in supercritical water. It was experimentally found that the chemical oxygen demand (COD) removal efficiency of these organic compounds can achi...Some aromatic compounds, phenol, aniline and nitrobenzene, were oxidized in supercritical water. It was experimentally found that the chemical oxygen demand (COD) removal efficiency of these organic compounds can achieve a high level more than 90% in a short residence time at temperatures high enough. As temperature, pressure and residence time increase, the COD removal efficiencies of the organic compounds would all increase. It is also found that temperature and residence time offer greater influences on the oxidation process than pressure. The difficulty in oxidizing these three compounds is in the order of nitrobenzene > aniline > Phenol. In addition, it is extremely difficult to oxidize aniline and nitrobenzene to CO2 and H2O at the temperature lower than 873.15 K and 923.15 K, respectively. Only at the temperature higher than 873.15 K and 923.15 K, respectively, the COD removal efficiencies of 90% of aniline and nitrobenzene can be achieved.展开更多
Supercritical water oxidation (SCWO) is an effective method for wastewater treatment. In this study, a lot of experiments are carried out to study the influence of various factors on the aniline destruction rate in ...Supercritical water oxidation (SCWO) is an effective method for wastewater treatment. In this study, a lot of experiments are carried out to study the influence of various factors on the aniline destruction rate in the SCWO process with a novel experiment setup. The experimental results show that the aniline destruction rate rises with the increase of the residence time, the reaction temperature and the reaction pressure. A dynamics analysis of the aniline SCWO reaction is conducted and the dynamic equation is obtained.展开更多
One of the bottle-neck problems to the commercial development of supercritlcal water oxidation (SCWO) is high operation cost. In this study the condition to realize an energetically self-sufficient SCWO process is a...One of the bottle-neck problems to the commercial development of supercritlcal water oxidation (SCWO) is high operation cost. In this study the condition to realize an energetically self-sufficient SCWO process is analyzed. The reaction heat is recovered by means of Organic Rankine Circle. The process of SCWO for phenol is simulated with the Aspen Plus~ process simulator, and the results show that the influence of temperature on reaction heat is small at a constant pressure. It is reasonable to neglect the effect of temperature and to estimate the heat of reaction with average temperature when the temperature changes in a small range. The necessary condition to realize an energetically self-sufficient SCWO process is that the released energy is not less than consumed one. Whether a waste system with given chemical composition is energeticallyself-sufficient can be estimated by ^QR^QH 〉 W The thermodynamics analysis shows that energetically self-sufficient SCWO process with an Organic Rankine Cycle is a feasible technology for the recovery of SCWO reaction heat,and the energy balance point for phenol is 2wt%.展开更多
Three poly(vinyl acetate)(PVAc)oligomers with controlled molecular weight and narrow molecular distribution are synthesized by reversible addition-fragmentation chain transfer(RAFT)polymerization.The effects of the re...Three poly(vinyl acetate)(PVAc)oligomers with controlled molecular weight and narrow molecular distribution are synthesized by reversible addition-fragmentation chain transfer(RAFT)polymerization.The effects of the reaction temperature and the added amount of initiator of the PVAc polymerization are discussed.In addition,the phase behavior of the prepared PVAc in pressured CO2 is determined via the cloud point method.The results indicate that the cloud point of PVAc increases with the increase in the molecular weight,the PVAc concentration,and the temperature.The cloud point pressures for the PVAc mass concentration of 0.12%with the molecular weight of 1 550,2 120,and 2 960 g/mol are 13.48,13.83 and 15.43 MPa,respectively,at the temperature of 35℃.It reveals that the solubility of PVAc in ScCO2 at relatively low pressure is remarkably limited.展开更多
Polyoxometalates (POMs), with their attractive topological and electronic properties, have been demonstrated over the last few decades to be efficient catalysts for many reactions. In a new direction, POMs having a ...Polyoxometalates (POMs), with their attractive topological and electronic properties, have been demonstrated over the last few decades to be efficient catalysts for many reactions. In a new direction, POMs having a purely inorganic framework are now being explored as efficient catalysts for water oxidation. This review focuses on very recent developments of POM-based catalysts for water oxidation to O2. In the very extensive family of POMs, tetra-core sandwich-type Ru- and Co-containing POM complexes, namely [Ru404(OH)2(H20)4(y-SiW10O36)2]10- and [CO4(H2O)2(a-PWgO34)2]10- exhibit the ability to facilitate water oxidation under electrocatalytic and/or photocatalytic conditions. However, it is concluded that much work still needs to be done to explain the catalytic mechanisms and optimize these catalytic systems. In addition, recent trends in using ionic liquids as media to modify the electrolytic environment and enhance water oxidation are highlighted.展开更多
TiO2-coated carbon felt(TCF)composite catalysts have been prepared via a supercritical treatment of titanium tetraisopropoxide(TTIP)as the precursor.The physical properties of the catalysts were characterized by means...TiO2-coated carbon felt(TCF)composite catalysts have been prepared via a supercritical treatment of titanium tetraisopropoxide(TTIP)as the precursor.The physical properties of the catalysts were characterized by means of thermogravimetric and differential thermal analysis(TG–DTA),X-ray diffraction(XRD),fluorescence spectroscopy,scanning electron microscopy (SEM),and BET surface areas techniques.The photocatalytic activities of the materials were evaluated using the degradation of Congo red(CR)as a probe reaction.All the composites showed much higher photocatalytic activity than commercial P25 due to significant synergistic effects.Reused TCF retained high photocatalytic activity for degradation of CR.The photocatalytic efficiency in CR degradation was found to be strongly dependent on the TiO2-coating ratio and calcination temperature.A possible mechanism for the enhanced reactivity involves shuttling of electrons from TiO2 particles to the carbon felt(CF)as a result of an optimal arrangement in TCF that stabilizes charge separation and reduces charge recombination.In addition to the significant synergistic effects,the abundant spaces between adjacent carbon fibers allow UV light to penetrate into the felt-like photocatalyst to a considerable depth,so that a three-dimensional environment is available for the photocatalytic reaction.展开更多
基金Supported by the Natural Science Foundation of Beijing(No.2992015)the National Natural Science Foundation ofChina.(No.20076004) and the Research Fund for the Doctoral Program of Higher Education(No.2000001005).
文摘The high-pressure phase behavior of coating-solvent-supercritical or sub-critical carbon dioxide system was investigated experimentally. The coating matrix used was 108-acrylic resin at concentration ranging from 10% to 50% (by mass) in mixtures with n-butyl acetate. The experiments were conducted in a high-pressure view cell for temperatures from 35℃ to 65℃ and for pressures from 3.0MPa to 8.0MPa. The effect of temperature, pressure and content of every component on the phase behavior of the systems was observed. Finally, the ternary phase diagram for resin-solvent-CO2 was plotted.
文摘To explore the feasibility of the full automatic animal experimental cabin to establish the animal models in normobaric/hypobaric hypoxic and high carbon dioxide environment. Methods: Sixty SPF-class male DS rats were divided into 2 groups, 20 for normobaric, hypoxic conditions and the other 40 for hypobaric, hypoxic conditions. For each group, the pulmonary arterial pressure and carotid arterial pressure indicators of rats were examined by using the physiological multi-detector, and the pulmonary vascular changes in the structure were observed. Results: The normobaric/hypobaric hypoxic with high carbon dioxide environment can promote the formation of pulmonary hypertension and accelerate changes in pulmonary vascular remodeling, and promote the right ventricular hypertrophy. Conclusion: Clinical applications showed that the animal experimental cabin has observed and controlled accurately. The result was safe, reliable and reproducible. The cabin can successfully establish the pulmonary hypertension model in normobaric/hypobaric hypoxic with high carbon dioxide environment, and in order to study the physiological mechanism of a variety of circulation and respiratory diseases caused by lack of oxygen, which provided an experimental technology platform for clinical research.
基金the Research Foundation of SINOPEC(No. X596006) and Cao Guangbiao's Advanced Research Foundation of Zhejiang University.
文摘Some aromatic compounds, phenol, aniline and nitrobenzene, were oxidized in supercritical water. It was experimentally found that the chemical oxygen demand (COD) removal efficiency of these organic compounds can achieve a high level more than 90% in a short residence time at temperatures high enough. As temperature, pressure and residence time increase, the COD removal efficiencies of the organic compounds would all increase. It is also found that temperature and residence time offer greater influences on the oxidation process than pressure. The difficulty in oxidizing these three compounds is in the order of nitrobenzene > aniline > Phenol. In addition, it is extremely difficult to oxidize aniline and nitrobenzene to CO2 and H2O at the temperature lower than 873.15 K and 923.15 K, respectively. Only at the temperature higher than 873.15 K and 923.15 K, respectively, the COD removal efficiencies of 90% of aniline and nitrobenzene can be achieved.
文摘Supercritical water oxidation (SCWO) is an effective method for wastewater treatment. In this study, a lot of experiments are carried out to study the influence of various factors on the aniline destruction rate in the SCWO process with a novel experiment setup. The experimental results show that the aniline destruction rate rises with the increase of the residence time, the reaction temperature and the reaction pressure. A dynamics analysis of the aniline SCWO reaction is conducted and the dynamic equation is obtained.
文摘One of the bottle-neck problems to the commercial development of supercritlcal water oxidation (SCWO) is high operation cost. In this study the condition to realize an energetically self-sufficient SCWO process is analyzed. The reaction heat is recovered by means of Organic Rankine Circle. The process of SCWO for phenol is simulated with the Aspen Plus~ process simulator, and the results show that the influence of temperature on reaction heat is small at a constant pressure. It is reasonable to neglect the effect of temperature and to estimate the heat of reaction with average temperature when the temperature changes in a small range. The necessary condition to realize an energetically self-sufficient SCWO process is that the released energy is not less than consumed one. Whether a waste system with given chemical composition is energeticallyself-sufficient can be estimated by ^QR^QH 〉 W The thermodynamics analysis shows that energetically self-sufficient SCWO process with an Organic Rankine Cycle is a feasible technology for the recovery of SCWO reaction heat,and the energy balance point for phenol is 2wt%.
基金The Natural Science Foundation of Jiangsu Province(No.BK20130602)the Applied Basic Research Program of Suzhou(No.SYG201836)the Project of the Collaborative Innovation Center of Suzhou Nano Science and Technology
文摘Three poly(vinyl acetate)(PVAc)oligomers with controlled molecular weight and narrow molecular distribution are synthesized by reversible addition-fragmentation chain transfer(RAFT)polymerization.The effects of the reaction temperature and the added amount of initiator of the PVAc polymerization are discussed.In addition,the phase behavior of the prepared PVAc in pressured CO2 is determined via the cloud point method.The results indicate that the cloud point of PVAc increases with the increase in the molecular weight,the PVAc concentration,and the temperature.The cloud point pressures for the PVAc mass concentration of 0.12%with the molecular weight of 1 550,2 120,and 2 960 g/mol are 13.48,13.83 and 15.43 MPa,respectively,at the temperature of 35℃.It reveals that the solubility of PVAc in ScCO2 at relatively low pressure is remarkably limited.
基金financed by the Australian Research Council Discovery Scheme and UNSW Science Faculty Research Grants Program
文摘Polyoxometalates (POMs), with their attractive topological and electronic properties, have been demonstrated over the last few decades to be efficient catalysts for many reactions. In a new direction, POMs having a purely inorganic framework are now being explored as efficient catalysts for water oxidation. This review focuses on very recent developments of POM-based catalysts for water oxidation to O2. In the very extensive family of POMs, tetra-core sandwich-type Ru- and Co-containing POM complexes, namely [Ru404(OH)2(H20)4(y-SiW10O36)2]10- and [CO4(H2O)2(a-PWgO34)2]10- exhibit the ability to facilitate water oxidation under electrocatalytic and/or photocatalytic conditions. However, it is concluded that much work still needs to be done to explain the catalytic mechanisms and optimize these catalytic systems. In addition, recent trends in using ionic liquids as media to modify the electrolytic environment and enhance water oxidation are highlighted.
基金supported by the Natural Science Foundation of Hunan Province (09JJ6101)the National Natural Science Foundation of China (50802034)
文摘TiO2-coated carbon felt(TCF)composite catalysts have been prepared via a supercritical treatment of titanium tetraisopropoxide(TTIP)as the precursor.The physical properties of the catalysts were characterized by means of thermogravimetric and differential thermal analysis(TG–DTA),X-ray diffraction(XRD),fluorescence spectroscopy,scanning electron microscopy (SEM),and BET surface areas techniques.The photocatalytic activities of the materials were evaluated using the degradation of Congo red(CR)as a probe reaction.All the composites showed much higher photocatalytic activity than commercial P25 due to significant synergistic effects.Reused TCF retained high photocatalytic activity for degradation of CR.The photocatalytic efficiency in CR degradation was found to be strongly dependent on the TiO2-coating ratio and calcination temperature.A possible mechanism for the enhanced reactivity involves shuttling of electrons from TiO2 particles to the carbon felt(CF)as a result of an optimal arrangement in TCF that stabilizes charge separation and reduces charge recombination.In addition to the significant synergistic effects,the abundant spaces between adjacent carbon fibers allow UV light to penetrate into the felt-like photocatalyst to a considerable depth,so that a three-dimensional environment is available for the photocatalytic reaction.