The diffusion behavior of methanol in different critical media (n-pentane, n-hexane, n-heptane and acetone) was investigated by the Monte Carlo (MC) method. From the simulation results, the diffusion constant of m...The diffusion behavior of methanol in different critical media (n-pentane, n-hexane, n-heptane and acetone) was investigated by the Monte Carlo (MC) method. From the simulation results, the diffusion constant of methanol molecule in the critical n-hexane is much larger than those in n-pentane, n-heptane and acetone. By analyzing the microscopic configurations of the critical mixtures, it is found that the diffusion constant of methanol is related to the local solvent clustering around methanol, but it does not exhibit strong dependence on the size of solvent cluster around methanol. Moreover, the survival time of the solvent cluster plays an important role in determining the diffusion constant.展开更多
Supercritical water has been focused on as an environmentally attractive reaction media, in which organic materials can be decomposed into smaller molecules. The reaction behavior of pyrrole as a simple model compound...Supercritical water has been focused on as an environmentally attractive reaction media, in which organic materials can be decomposed into smaller molecules. The reaction behavior of pyrrole as a simple model compound of nonbasic nitrogen compounds found in petroleum residua was studied in supercritical water with a batch type reactor. The reaction was carried out at temperatures of 698-748 K and at various pressures under an argon atmosphere. The chemical species in the aqueous products were identified by GCMS (gas chromatography mass spectrometry) and quantified using GC-FID (gas chromatography flame ionization detector). The effect of temperature and reaction time on the conversion process of pyrrole is presented. Under supercritical water conditions, pyrrole underwent successful decomposition in water into its derived compounds. The conversion of pyrrole could approach 81.12 wt% at 723 K and 40 MPa within 240 min of reaction time. The decomposition process was accelerated with the existence of water at the same temperature. Ultimate analysis of solid products was also conducted using a CHN analyzer. The process investigated in this study may form the basis for an efficient method of nitrogen compound decomposition in future.展开更多
UO2+, which is extracted from the aqueous phase into the 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide(C2mim NTf2) ionic liquid ph^ase with octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine o...UO2+, which is extracted from the aqueous phase into the 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide(C2mim NTf2) ionic liquid ph^ase with octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide(CMPO), can be stripped by supercritical CO2. Trioctylphosphine oxide(TOPO), the modifier added to the supercritical CO2 phase, enhances the stripping efficiency by up to 99%.展开更多
The present study has theoretically investigated the combined torsional buckling of double-walled carbon nanotubes (DWCNTs) with axial load in the multi-field coupled condition. The effects of torsion, axial load, the...The present study has theoretically investigated the combined torsional buckling of double-walled carbon nanotubes (DWCNTs) with axial load in the multi-field coupled condition. The effects of torsion, axial load, thermal-electrical change, surrounding elastic medium and the Van der Waals forces are all taken into consideration. The governing equation of buckling for CNTs subjected to thermo-electro-mechanical loadings has been established based on an elastic shell model of continuum mechanics. Reasonable simplifications are made to get the explicit expression of the critical buckling shear stress of DWCNTs, and numerical experiments are conducted for further research. It is shown that under certain electric and temperature field the critical buckling shear stress of DWCNTs only depends on the wave number of buckling modes. On the other hand, all the related impact factors have enormous influence on the critical buckling shear stress under a certain buckling mode. The critical buckling shear stress changes linearly with the axial-to-shear stress ratio, as well as the thermal and electric change. Axial compression tends to make DWCNTs unstable, while axial tension benefits the buckling stability. The critical buckling shear stress is directly proportional to the applied voltage. At room or lower temperature, the critical shear stress for infinitesimal buckling increases as the temperature change increases, while it decreases at a higher temperature. The conclusions are useful for the design of nano-structures related to the buckling stability of DWCNTs.展开更多
文摘The diffusion behavior of methanol in different critical media (n-pentane, n-hexane, n-heptane and acetone) was investigated by the Monte Carlo (MC) method. From the simulation results, the diffusion constant of methanol molecule in the critical n-hexane is much larger than those in n-pentane, n-heptane and acetone. By analyzing the microscopic configurations of the critical mixtures, it is found that the diffusion constant of methanol is related to the local solvent clustering around methanol, but it does not exhibit strong dependence on the size of solvent cluster around methanol. Moreover, the survival time of the solvent cluster plays an important role in determining the diffusion constant.
文摘Supercritical water has been focused on as an environmentally attractive reaction media, in which organic materials can be decomposed into smaller molecules. The reaction behavior of pyrrole as a simple model compound of nonbasic nitrogen compounds found in petroleum residua was studied in supercritical water with a batch type reactor. The reaction was carried out at temperatures of 698-748 K and at various pressures under an argon atmosphere. The chemical species in the aqueous products were identified by GCMS (gas chromatography mass spectrometry) and quantified using GC-FID (gas chromatography flame ionization detector). The effect of temperature and reaction time on the conversion process of pyrrole is presented. Under supercritical water conditions, pyrrole underwent successful decomposition in water into its derived compounds. The conversion of pyrrole could approach 81.12 wt% at 723 K and 40 MPa within 240 min of reaction time. The decomposition process was accelerated with the existence of water at the same temperature. Ultimate analysis of solid products was also conducted using a CHN analyzer. The process investigated in this study may form the basis for an efficient method of nitrogen compound decomposition in future.
基金supported by the National Natural Science Foundation of China(91226112)
文摘UO2+, which is extracted from the aqueous phase into the 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide(C2mim NTf2) ionic liquid ph^ase with octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide(CMPO), can be stripped by supercritical CO2. Trioctylphosphine oxide(TOPO), the modifier added to the supercritical CO2 phase, enhances the stripping efficiency by up to 99%.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10902040, A020602)the Specialized Research Fund for the Doctoral Program of Higher Education(New Teachers)+2 种基金the Foundation for Distinguished Young Talents in Higher Education of Guangdong(Grant No. LYM08016)the Foundation for Outstanding Doctoral Dissertation of Guangdongthe Fundamental Research Funds for the Central Universities, South China University of Technology (Grant Nos.2009ZM0238,2009ZM0280)
文摘The present study has theoretically investigated the combined torsional buckling of double-walled carbon nanotubes (DWCNTs) with axial load in the multi-field coupled condition. The effects of torsion, axial load, thermal-electrical change, surrounding elastic medium and the Van der Waals forces are all taken into consideration. The governing equation of buckling for CNTs subjected to thermo-electro-mechanical loadings has been established based on an elastic shell model of continuum mechanics. Reasonable simplifications are made to get the explicit expression of the critical buckling shear stress of DWCNTs, and numerical experiments are conducted for further research. It is shown that under certain electric and temperature field the critical buckling shear stress of DWCNTs only depends on the wave number of buckling modes. On the other hand, all the related impact factors have enormous influence on the critical buckling shear stress under a certain buckling mode. The critical buckling shear stress changes linearly with the axial-to-shear stress ratio, as well as the thermal and electric change. Axial compression tends to make DWCNTs unstable, while axial tension benefits the buckling stability. The critical buckling shear stress is directly proportional to the applied voltage. At room or lower temperature, the critical shear stress for infinitesimal buckling increases as the temperature change increases, while it decreases at a higher temperature. The conclusions are useful for the design of nano-structures related to the buckling stability of DWCNTs.